

STATE BOARD OF TECHNICAL EDUCATION, BIHAR

Scheme of Teaching and Examinations for

Ist Semester

(Effective from Session 2020-21)

THEORY

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME			EXAMINATION – SCHEME							Credits	
			Periods per Week			Hours of Exam.	Teacher's Assessment (TA) Marks (A)	Class Test(CT) Marks (B)	End Semester Exam. (ESE) Marks (C)	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject		
			L	T	L+T									
1.	Mathematics-I	2001101	02	01	03	03	10	20	70	100	28	40	03	
2.	Applied Physics-I	2001102	02	01	03	03	10	20	70	100	28	40	03	
3.	Applied Chemistry	2001103	02	01	03	03	10	20	70	100	28	40	03	
4.	Communication Skills in English	2001104	02	-	02	03	10	20	70	100	28	40	02	
5.	Engg. Graphics	2001105	03		03	03	10	20	70	100	28	40	02	
Total:-			11	03	14					350	500		13	

PRACTICAL

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME		EXAMINATION – SCHEME					Credits	
			Periods per Week	Hours of Exam.	Practical		Total Marks	Pass Marks in the Subject			
					Internal(PA)	External(ESE)					
6.	Applied Physics Lab-I	2001106	03	03	15	35	50	20	02		
7.	Applied Chemistry Lab	2001107	03	03	15	35	50	20	02		
8.	Communication Skills in English Lab	2001108	03	03	15	35	50	20	02		
Total:-			09						150	06	

TERM WORK

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME		EXAMINATION – SCHEME				Credits
			Periods per week		Marks of Internal (PA)	Marks of External (ESE)	Total Marks	Pass Marks in the Subject	
9.	Engg. Workshop Practice	2001109	06	07	18	25	10	02	
10.	Sports and Yoga	2001110	02	07	18	25	10	02	
11.	C/KYP/IT Essential / Python/ Others	2001111	-	15	35	50	20	01	
Total:-				08				100	05
Total Periods per week Each of duration One Hour					Total Marks = 750				24

Total Periods per week Each of duration

One Hour **31**

MATHEMATICS-I

Subject Code 2001101	Theory			No of Periods in One Session : 45		Credits 03
	No. of Periods Per Week			Full Marks	:	
	L	T	P/S	ESE	:	
	02	01	-	TA	:	
	-	-	-	CT	:	

Course Objectives:

This course is designed to give a comprehensive coverage at an introductory level to the subject of Trigonometry, Co-ordinate Geometry, Basic elements of algebra and Matrices.

Course Content:

UNIT - I: Trigonometry

[09]

Concept of angles, measurement of angles in degrees, grades and radians and their conversions, T-Ratios of Allied angles (without proof), Sum, difference formulae and their applications (without proof). Product formulae (Transformation of product to sum, difference and vice versa). T- Ratios of multiple angles, sub-multiple angles (2A, 3A, A/2). Graphs of $\sin x$, $\cos x$, $\tan x$ and e^x . Concept of inverse circular function.

UNIT - II: Co-Ordinate Geometry

[17]

Equation of straight line in various standard forms (without proof), intersection of two straight lines,

Angle between two lines. Parallel and perpendicular lines, perpendicular distance formula.

General equation of a circle and its characteristics. To find the equation of a circle, given:

i. Centre and radius,

ii. Three points lying on it and

iii. Coordinates of end points of a diameter;

Definition of conics (Parabola, Ellipse, Hyperbola) their standard equations (without proof). Problems on conics when their foci, directrices or vertices are given.

UNIT - III: Algebra

Complex Numbers: Definition, real and imaginary parts of a Complex number, polar and cartesian [04]

representation of a complex number and its conversion from one form to other, conjugate of a complex number, modulus and amplitude of a complex number. Addition, Subtraction, Multiplication and Division of complex numbers, De-moivre's theorem (without proof) and its application.

Partial fractions: Definition of polynomial fraction, proper & improper fractions and definition [03] of partial fractions. To resolve proper fraction into partial fraction with denominator containing non-repeated linear factors, repeated linear factors and irreducible non-repeated quadratic factors. To resolve improper fraction into partial fraction.

Permutations and Combinations: Definition of Factorial Notation, Introduction of [02]
Permutation & Combination, Value of $n P_r$ and $n C_r$.

Binomial Theorem: Binomial theorem (without proof) for positive integral index (expansion [04] and general form); binomial theorem for any index (expansion without proof) first and second

Determinants and Matrices

[06]

Elementary properties of determinants up to 3rd order, consistency of equations, Crammer's rule. Algebra of matrices, Transpose of a matrix, Adjoint of a matrix, Inverse of a matrix, (by adjoint method), matrix inverse method to solve a system of linear equations in 2 or 3 variables.

References:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 40th Edition, 2007.
2. Reena Garg, Engineering Mathematics, Khanna Publishing House, New Delhi (Revised Ed. 2018)
3. Mathematics Today - XI & XII (Part I) by Lalji Prasad (Paramount Publication, Govind Mitra Road).
4. A Text Book of Mathematics - XI & XII (Vol-1) by K.C. Sinha-Rastogi Publication, Meerut
5. Reena Garg & Chandrika Prasad, Advanced Engineering Mathematics, Khanna Publishing House, New Delhi

Course Outcomes:

By the end of the course, the students are expected to learn

- (i) The students are expected to acquire necessary background in Trigonometry to appreciate the importance of the geometric study as well as for the calculation and the mathematical analysis.
- (ii) The ability to find the effects of changing conditions on a system.
- (iii) The coordinate geometry provides a connection between algebra and geometry through graphs of lines and curves.
- (iv) Complex numbers enter into studies of physical phenomena in ways that most people cannot imagine.
- (v) The students are expected to acquire necessary background in Determinants and Matrices so as to appreciate the importance of the Determinants as the factors that scale different parameterizations so that they all produce same overall integrals, i.e. they are capable of encoding the inherent geometry of the original shape.

APPLIED PHYSICS-I

Subject Code 2001102	Theory			No of Periods in One Session : 45			Credits 03
	No. of Periods Per Week			Full Marks		:	
	L	T	P/S	ESE	:	100	
	02	01	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:

Applied Physics includes the study of a large number of diverse topics all related to materials/things that exist in the world around us. It aims to give an understanding of this world both by observation and by prediction of the way in which such objects behave. Concrete use of physical principles and analysis in various fields of engineering and technology are given prominence in the course content. The course will help the diploma engineers to apply the basic concepts and principles to solve broad- based engineering problems and to understand different technology based applications.

Teaching Approach:

- Teachers should give examples from daily routine as well as, engineering/technology applications on various concepts and principles in each topic so that students are able to understand and grasp these concepts and principles. In all contents, SI units should be followed.
- Use of demonstration can make the subject interesting and develop scientific temper in the students. Student activities should be planned on all the topics.
- Activity- Theory - Demonstrate/practice approach may be followed throughout the course so that learning may be outcome and employability based.

Course Content:

Unit 1: Physical world, Units and Measurements

[05]

Physical quantities; fundamental and derived, Units and systems of units (FPS, CGS and SI units), Dimensions and dimensional formulae of physical quantities, Principle of homogeneity of dimensions, Dimensional equations and their applications (conversion from one system of units to other, checking of dimensional equations and derivation of simple equations), Limitations of dimensional analysis.

Measurements: Need, measuring instruments, least count, types of measurement (direct, indirect), Errors in measurements (systematic and random), absolute error, relative error, error propagation, error estimation and significant figures.

Unit 2: Force and Motion

[09]

Scalar and Vector quantities – examples, representation of vector, types of vectors. Addition and Subtraction of Vectors, Triangle and Parallelogram law (Statement only), Scalar and Vector Product, Resolution of a Vector and its application to inclined plane and lawn roller.

Force, Momentum, Statement and derivation of conservation of linear momentum, its applications such as recoil of gun, rockets, Impulse and its applications.

Circular motion, definition of angular displacement, angular velocity, angular acceleration, frequency, time period, Relation between linear and angular velocity, linear acceleration and angular acceleration (related numerical), Centripetal and Centrifugal forces with live examples, Expression and applications such as banking of roads and bending of cyclist.

Unit 3: Work, Power and Energy**[09]**

Work: Concept and units, examples of zero work, positive work and negative work. Friction: concept, types, laws of limiting friction, coefficient of friction, reducing friction and its engineering applications. Work done in moving an object on horizontal and inclined plane for rough and plane surfaces and related applications. Energy and its units, kinetic energy, gravitational potential energy with examples and derivations, mechanical energy, conservation of mechanical energy for freely falling bodies, transformation of energy (examples). Power and its units, power and work relationship, calculation of power (numerical problems).

Unit 4: Rotational Motion**[08]**

Translational and rotational motions with examples, Definition of torque and angular momentum and their examples, Conservation of angular momentum (quantitative) and its applications.

Moment of inertia and its physical significance, radius of gyration for rigid body, Theorems of parallel and perpendicular axes (statements only), Moment of inertia of rod, disc, ring and sphere (hollow and solid); (Formulae only).

Unit 5: Properties of Matter**[08]**

Elasticity: definition of stress and strain, modulus of elasticity, Hooke's law, significance of stress-strain curve.

Pressure: definition, units, atmospheric pressure, gauge pressure, absolute pressure, Fortin's Barometer and its applications.

Surface tension: concept, units, cohesive and adhesive forces, angle of contact, Ascent Formula (No derivation), applications of surface tension, effect of temperature and impurity on surface tension.

Viscosity and coefficient of viscosity: Terminal velocity, Stokes law and effect of temperature on viscosity, application in hydraulic systems.

Hydrodynamics: Fluid motion, stream line and turbulent flow, Reynolds number Equation of continuity, Bernoulli's Theorem (only formula and numerical) and its applications.

Unit 6: Heat and Thermometry**[06]**

Concept of heat and temperature, modes of heat transfer (conduction, convection and radiation with examples), specific heats, scales of temperature and their relationship, Types of Thermometer (Mercury thermometer, Bimetallic thermometer, Platinum resistance thermometer, Pyrometer) and their uses.

Expansion of solids, liquids and gases, coefficient of linear, surface and cubical expansions and relation amongst them, Co-efficient of thermal conductivity, engineering applications.

Learning Outcome:

After undergoing this subject, the student will be able to:

- Identify physical quantities, select their units for use in engineering solutions, and make measurements with accuracy by minimizing different types of errors.
- Represent physical quantities as scalar and vectors and solve real life relevant problems.
- Analyse type of motions and apply the formulation to understand banking of roads/railway tracks and conservation of momentum principle to describe rocket propulsion, recoil of gun etc.
- Define scientific work, energy and power and their units. Derive relationships for work, energy and

power and solve related problems.

- Describe forms of friction and methods to minimize friction between different surfaces.
- State the principle of conservation of energy. Identify various forms of energy, and energy transformations.
- Compare and relate physical properties associated with linear motion and rotational motion and apply conservation of angular momentum principle to known problems.
- Describe the phenomenon of surface tension, effects of temperature on surface tension and solve statics problems that involve surface tension related forces.
- Describe the viscosity of liquids, coefficient of viscosity and the various factors affecting its value. Determine viscosity of an unknown fluid using Stokes' Law and the terminal velocity.
- Define stress and strain. State Hooke's law and elastic limits, stress-strain diagram, determine; (a) the modulus of elasticity, (b) the yield strength (c) the tensile strength, and (d) estimate the percent elongation.
- Illustrate the terms; heat and temperature, measure temperature in various processes on different scales (Celsius, Fahrenheit, and Kelvin etc.)
- Distinguish between conduction, convection and radiation; identify different methods for reducing heat losses and mode of heat transfer between bodies at different temperatures.
- State specific heats and measure the specific heat capacity of solids and liquids.

References:

1. Text Book of Physics for Class XI& XII (Part-I, Part-II); N.C.E.R.T., Delhi
2. Applied Physics, Vol. I and Vol. II, TTTI Publications, Tata McGraw Hill, Delhi.
3. Concepts in Physics by HC Verma, Vol. I & II, Bharti Bhawan Ltd. New Delhi
4. Engineering Physics by PV Naik, Pearson Education Pvt. Ltd, New Delhi
5. Engineering Physics by DK Bhattacharya & Poonam Tandan; Oxford University Press, New Delhi.
6. Comprehensive Practical Physics, Vol, I & II, JN Jaiswal, Laxmi Publications (P) Ltd., New Delhi
7. Practical Physics by C. L. Arora, S. Chand Publication.
8. e-books/e-tools/ learning physics software/websites etc.

APPLIED CHEMISTRY

Subject Code 2001103	Theory			No of Periods in One Session : 45			Credits 03
	No. of Periods Per Week			Full Marks : 100			
	L	T	P/S	ESE	: 70	TA	: 10
	02	01	-	CT	: 20		
	-	-	-				

Course Objectives:

There are numerous number materials used in fabricating and manufacturing devices for the comfort of life. The selection, characterization and suitability assessment of natural raw materials essentially requires principles and concepts of Applied Chemistry for students. On successful completion of this course :-

- The students will be able to understand, ascertain and analyse the properties of natural raw materials required for producing economical and eco-friendly finished products.
- Solve various engineering problems applying the basic knowledge of atomic structure and chemical bonding.
- Use relevant water treatment method to solve domestic and industrial problems.
- Solve the engineering problems using knowledge of engineering materials and properties.
- Use relevant fuel and lubricants for domestic and Industrial applications
- Solve the engineering problems using concept of Electrochemistry and Corrosion.

Course Content :

UNIT-I Atomic Structure and Chemical Bonding. [10]

Rutherford Model of Atom, Photoelectric Effect, Bohr's Theory (Expression of Energy and Radius to be omitted) and hydrogen spectrum explanation based on Bohr's Model of Atom, Wave Mechanical model of atom, de Broglie relationship, Heisenberg Uncertainty Principle, Quantum Number, Shapes of Atomic Orbitals, Pauli's Exclusion Principle, Hund's Rule of Maximum Multiplicity, Aufbau Principle, Electronic Configuration (till atomic number 30).

Concept of Chemical bonding – Cause of chemical bonding, Types of Bonds : Ionic Bond (NaCl, CaCl₂, MgO), Covalent Bond, Polar and Non polar Covalent Bonds (H₂, F₂, HF, HCl) & Co-ordinate Bond (CO, NH₄⁺, O₃, H₂SO₄), Dipole Moment (NH₃, NF₃), Hydrogen bonding, Anamalous properties of NH₃, H₂O due to Hydrogen Bonding .

Concept of Hybridisation, Structure and Shape of Simple Inorganic Molecule e.g. BeCl₂, BF₃, CH₄, NH₃, H₂O on the basis of hybridisation.

UNIT-II Water [08]

Introduction, Sources of Water, Hardness of Water, Degree of Hardness (In terms of CaCO₃ equivalent), Unit of Hardness, Quantitative Measurement of Water Hardness by EDTA method. Municipal supply of Water, Disinfection of Water.

Water Softening Technique-Soda Lime Process, Determination of Dissolved Oxygen, Water Quality Index – Biological Oxygen Demand, Chemical Oxygen Demand, Simple Numerical Problems.

UNIT-III Engineering Materials. [08]

Natural Occurrence of Metals, Metallurgy – brief account of general principles of Metallurgy, Gangue, Flux and Slag, Extraction of Aluminum, Iron and Copper from their important ores along with

reactions.

Alloys – Definition, Purpose of Alloying, Ferrous and Non Ferrous Alloy with suitable examples, Composition, Properties and Applications.

Polymers–Homopolymers and Copolymers, Addition and Condensation Polymerization e.g. Polythene, Orlon, Terylene, Nylon 66, Nylon 6, Bakelite, Thermoplastic and Thermosetting plastic, Rubber and Vulcanization of Rubber with Chemical Reaction.

UNIT-IV Chemistry of Fuel and Lubricants.

[09]

Definition of Fuel, Characteristics of an Ideal Fuel, Classification of Fuel, Calorific Values (HCV and LCV), Determination of Calorific Value by using Bomb Calorimeter, Calculation of HCV and LCV using Dulong's formula.

Petrol and Diesel-Fuel Rating (Octane and Cetane Number), Chemical Composition, Calorific Values and Application of LPG, CNG and Biogas.

Lubricants-Functions and Properties of Good Lubricant, Viscosity & Viscosity Index, Flash point, Fire point, Cloud & Pour point, Classification of Lubricants with examples.

UNIT-V Electrochemistry.

[10]

Introduction, Electrolyte and Non electrolyte, Arrhenius Theory of Ionization, Electrolytic and Metallic Conduction, Factors affecting Electrolytic Conductance, Ohm's law, Molar Conductivity and Equivalent Conductivity, Variation of Molar Conductivity, Kohlrausch's law, Electrolysis, Faraday's Laws of Electrolysis and simple numerical problems.

Galvanic Cell, Electrode Potential, Measurement of Electrode Potential NHE (Normal Hydrogen electrode) EMF, Electrochemical Series, Nernst Equation for Electrode Potential.

Batteries, (Commercial Cells) - Primary cells-Dry cell, Secondary cell -Lead storage battery, Fuel cells.

Corrosion as an Electrochemical Process.

Learning Outcomes

At the end of the course student will be able to

1. Understand the classification and general properties of engineering materials such as metal, alloys, and composite materials using knowledge of chemical bonding.
2. Understand and assess the suitability of water source for domestic and industrial application, effluents and minimize water pollution.
3. Qualitatively analyze the engineering materials and understand their properties and applications.
4. Choose fuel and lubricants suitable for economical industrial processing to obtain eco-friendly finished products.
5. a) Ascertain construction, mechanism efficiency of electrochemical cells, solar cell fuel cells
b) Understand corrosion and develop economical prevention techniques.

References/Suggested Learning Resources:

(a) Books :

- 1) Text Book of Chemistry for Class XI& XII (Part-I, Part-II); N.C.E.R.T., Delhi, 2017-18.
- 2) Agrawal, & Shikha, Engineering Chemistry, Cambridge University Press; New Delhi, 2015.
- 3) C.N. R. Rao, Understanding Chemistry, Universities Press (India) Pvt. Ltd., 2011.
- 4) Dara, S. S. & Dr.S.S.Umare, Engineering Chemistry, S.Chand. Publication, New Delhi, 2015.
- 5) Jain & Jain, Engineering Chemistry, Dhanpat Rai and Sons; New Delhi, 2015.
- 6) Dr. Vairam, S., Engineering Chemistry, Wiley India Pvt.Ltd., New Delhi, 2013.
- 7) Dr. G. H. Hugar & Prof A. N. Pathak, Applied Chemistry Laboratory Practices, Vol. I and Vol. II, NITTTR, Chandigarh, Publications, 2013-14.
- 8) Agnihotri, Rajesh, Chemistry for Engineers, Wiley India Pvt.Ltd., 2014.

(b) Open source software and website address:

- 1) www.chemguide.co.uk/atommenu.html (Atomic structure and chemical bonding)
- 2) www.visionlearning.com (Atomic structure and chemical bonding)
- 3) www.chem1.com (Atomic structure and chemical bonding)
- 4) <https://www.wastewaterlearning.com/elearning/> (Water Treatment)
- 5) www.capital-refractories.com (Metals, Alloys, Cement, and Refractory Materials)
- 6) www.em-ea.org/guide%20books/book-2/2.1%20fuels%20and%20combustion.pdf (Fuel and Combustion)
- 7) www.chemcollective.org (Metals, Alloys)
- 8) www.wqa.org (Water Treatment)

COMMUNICATION SKILLS IN ENGLISH

Subject Code 2001104	Theory			No of Periods in One Session : 30			Credits 02
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70 (50Eng.+20 Hindi)	
	02	-	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:

Communication skills play an important role in career development. This course aims at introducing basic concepts of communication skills with an emphasis on developing personality of the students. Thus, the main objectives of this course are:

- To develop confidence in speaking English with correct pronunciation;
- To develop communication skills of the students i.e. listening, speaking, reading and writing skills; and
- To introduce the need for personality development.

Focus will be on developing certain qualities which will aid students in handling personal and career challenges, leadership skills etc.

Course Content :

Part - A (English)

UNIT - 1 COMMUNICATION: THEORY AND PRACTICE

F.M. - 50(English)

[04]

- ◆ **Basics of Communication:** Introduction, Meaning and Definition, Process of Communication, Elements of Communication: Sender-Message-Channel-Receiver-Feedback & Context, Feedback: Definition & Importance.
- ◆ **Types of Communication:** Formal and Informal, Verbal-Non-verbal, Types of Verbal Communication: Oral and Written, Non-Verbal Codes such as Kinesics, Proxemics, Haptics, Vocalics, Chronemics, Physical Appearance; Tables, Charts and Graphs in Graphic Communication Oral and Written.

UNIT - 2 EFFECTIVE COMMUNICATION AND COMMUNICATION BARRIERS [04]

- ◆ **Concept, 7 Cs for Effective Communication (Considerate, Concrete, Concise, Clear, Complete, Correct, Courteous);**
- ◆ **Art of Effective Communication: Choosing Words, Voice, Modulation, Clarity, Time, Simplification of Words.**
- ◆ **Different Barriers to Communication, Ways to Remove/Minimize.**

UNIT - 3 READING COMPREHENSION

[03]

- ◆ **Comprehension and Vocabulary enhancement based on reading of the following texts:**
SECTION-1

Malgudi Days:

R.K. Narayan

What Students Can Do:

Mohandas Karamchand Gandhi

The Secret of Work :

Swami Vivekanand

SECTION-2

Stopping by Woods on a Snowy Evening:	Robert Frost
Where the Mind Is without Fear:	Rabindranath Tagore
Ode on Solitude:	Alexander Pope
A Psalm of Life:	H.W. Longfellow

UNIT - 4 FORMAL WRITTEN SKILLS/PROFESSIONAL WRITING

[04]

- ◆ Application to Principal/Librarian.
- ◆ Drafting E-mails, Messages and Notices.
- ◆ Business Letters: Enquiry Letter, Order Letter, Complaint Letter, Adjustment Letter.
- ◆ Application / Official Letter Writing.
- ◆ Report Writing.

UNIT - 5 VOCABULARY AND GRAMMAR

[05]

- ◆ Vocabulary of Common Words.
- ◆ One Word Substitution, Common Idioms and Phrases.
- ◆ Use of Synonyms & Antonyms.
- ◆ Parts of Speech, Simple Sentence and Question, Adding Question-Tags, Removal of 'Too', Active Voice into Passive Voice, Direct Speech into Indirect Speech (in cases of Simple Sentence and Question), Punctuation.

Part-B (Hindi)

कुल-20 अंक (हिन्दी)

UNIT - 1. सम्प्रेषण - सिद्धांत एवं व्यवहार

[02]

सम्प्रेषण - परिचय, अर्थ एवं परिभाषा, सम्प्रेषण की प्रक्रिया

1. सम्प्रेषण के प्रकार - औपचारिक एवं अनौपचारिक, शाब्दिक एवं अशाब्दिक
2. प्रभावशाली सम्प्रेषण के सिद्धांत एवं व्यवधान
3. प्रभावशाली सम्प्रेषण कौशल - शब्द चयन, आवाज़, स्वर परिवर्तन, स्वर सामंजस्य, स्पष्टता, शब्दों की सरलता
4. तकनीकी सम्प्रेषण

UNIT - 2. . व्यावसायिक उत्कृष्टता हेतु व्यवहार कौशल

[02]

1. परिचय - तकनीकी कौशल एवं व्यवहार कौशल
2. व्यवहार कौशल का महत्व
3. जीवन कौशल - आत्म जागरूकता एवं आत्म विश्लेषण
4. भावनात्मक बुद्धिमत्ता एवं करुणा, अनुकूलनशीलता एवं लचीलापन
5. व्यवहार कौशल का उपयोग - वृत्त अध्ययन

निर्धारित पाठ्य सामग्री -

(क) प्रेमचंद की कहानियाँ - शतरंज के खिलाड़ी, नमक का दारोगा, ईदगाह, पूस की रात

(ख) रविन्द्रनाथ टैगोर की रचना-मन जहां भय से मुक्त हो

(ग) कबीर के पद एवं दोहे

UNIT - 4. लेखन कौशल

1. सार लेखन
2. औपचारिक पत्र लेखन - कार्मिक एवं व्यावसायिक पत्र, सरकारी पत्र, अर्द्धसरकारी पत्र-लेखन
3. प्रारूप लेखन - सूचना, बायोडाटा, निविदा लेखन, प्रतिवेदन-लेखन

UNIT - 5. शब्दावली एवं व्याकरण

1. सामान्य शब्दावली
2. प्रशासनिक शब्दावली
3. शब्द भेद, अनेक शब्दों के लिए एक शब्द
4. विराम चिन्ह
5. मुहावरे एवं कहावतें

References:

1. J.D.O'Connor. *Better English Pronunciation*. Cambridge: Cambridge University Press, 1980.
2. Lindley Murray. *An English Grammar: Comprehending Principles and Rules*. London: Wilson and Sons, 1908.
3. Kulbhushan Kumar, *Effective Communication Skills*, Khanna Publishing House, New Delhi (Re-vised Edition 2018)
4. Margaret M. Maison. *Examine your English*. Orient Longman: New Delhi, 1964.
5. M. Ashraf Rizvi. *Effective Technical Communication*. Mc-Graw Hill: Delhi, 2002.
6. John Nielson. *Effective Communication Skills*. Xlibris, 2008.
7. *Oxford Dictionary*
8. *Roget's Thesaurus of English Words and Phrases*
9. *Collin's English Dictionary*

Course outcomes:

At the end of this course, the participants will:

- Develop basic speaking and writing skills including proper usage of language and vocabulary so that they can become highly confident and skilled speakers and writers.
- Be informed of the latest trends in basic verbal activities such as presentations, facing interviews and other forms of oral communication.
- Also develop skills of group presentation and communication in team.
- Develop non-verbal communication such as proper use of body language and gestures.

ENGG. GRAPHICS

Subject Code 2001105	Theory			No of Periods in One Session : 45			Credits 02
	No. of Periods Per Week			Full Marks		:	
	L	T	P/S	ESE	:	70	
	03	-	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:

- To understand the language of graphics which is used to express ideas, convey instructions while carrying out engineering jobs.
- To develop drafting and sketching skills, to know the applications of drawing equipments, and get familiarize with Indian Standards related to engineering drawings.
- To develop skills to visualize actual object or a part of it, on the basis of drawings.
- To develop skills to translate ideas into sketches and to draw and read various engineering curves, projections and dimensioning styles.
- To understand the basic commands and develop basic skills related to computer aided drafting, of how to draw, modify, and edit basic shapes (2D), using AUTOCAD.

Course Content

UNIT – I Basic elements of Drawing

[06]

Drawing Instruments and supporting materials: method to use them with applications. Convention of lines and their applications.

Representative Fractions – reduced, enlarged and full size scales; Engineering Scales such as plain and diagonal scale.

Dimensioning techniques as per SP-46:2003 – types and applications of chain, parallel and coordinate dimensioning.

Geometrical and Tangency constructions. (Redraw the figure)

UNIT – II Orthographic projections

[08]

Introduction of projections-orthographic, perspective, isometric and oblique: concept and applications.

Introduction to orthographic projection, First angle and Third angle method, their symbols.

Conversion of pictorial view into Orthographic Views – object containing plain surfaces, slanting surfaces, slots, ribs, cylindrical surfaces. (use First Angle Projection method only)

UNIT – III Isometric Projections

[08]

Introduction to isometric projections.

Isometric scale and Natural scale.

Isometric view and isometric projection.

Illustrative problems related to objects containing lines, circles and arcs shape only. Conversion of orthographic views into isometric view/projection.

UNIT – IV Free Hand Sketches of engineering elements

[07]

Free hand sketches of machine elements: Thread profiles, nuts, bolts, studs, set screws, washer, Locking arrangements. (For branches other than mechanical Engineering, the teacher should select branch specific elements for free hand sketching) Free hand sketches of orthographic view (on squared graph paper) and isometric view (on isometric grid paper)

Computer Aided Drafting: concept. Hardware and various CAD software available.

System requirements and Understanding the interface.

Components of AutoCAD software window: Title bar, standard tool bar, menu bar, object properties tool bar, draw tool bar, modify tool bar, cursor cross hair. Command window, status bar, drawing area, UCS icon.

File features: New file, Saving the file, Opening an existing drawing file, Creating templates, Quit.

Setting up new drawing: Units, Limits, Grid, Snap.

Undoing and redoing action.

UNIT – VI Computer aided drafting**[08]**

Draw basic entities like Line, Circle, Arc, Polygon, Ellipse, Rectangle, Multiline, PolyLine.

Method of Specifying points: Absolute coordinates, Relative Cartesian and Polar coordinates.

Modify and edit commands like trim, extend, delete, copy, offset, array, block, layers.

Dimensioning: Linear, Horizontal Vertical, Aligned, Rotated, Baseline, Continuous, Diameter, Radius, Angular Dimensions.

Dim scale variable.

Editing dimensions.

Text: Single line Text, Multiline text.

Standard sizes of sheet. Selecting Various plotting parameters such as Paper size, paper units, Drawing orientation, plot scale, plot offset, plot area, print preview.

S. No.	Exercises	Unit No.
1	Draw horizontal, Vertical, 30 degree, 45 degree, 60 and 75 degrees lines, different types of lines, dimensioning styles using Tee and Set squares/ drafter. (do this exercise in sketch book)	I
2	Write alphabets and numerical (Vertical only) (do this exercise in sketch book)	I
3	Draw regular geometric constructions and redraw the given figure (do this exercise in sketch book) Part I	II
4	Draw regular geometric construction and redraw the given figure (do this exercise in sketch book) Part II	II
5	Draw a problem on orthographic projections using first angle method of projection having plain surfaces and slanting. Part I	III
6	Draw another problem on orthographic projections using first angle method of projection having slanting surfaces with slots. Part II	III
7	Draw two problems on orthographic projections using first angle method of projection having cylindrical surfaces, ribs. Part I	III
8	Draw two problems on Isometric view of simple objects having plain and slanting surface by using natural scale. Part I	IV
9	Draw some problems on Isometric projection of simple objects having cylindrical surface by using isometric scale. Part I	IV

10	Draw free hand sketches/ conventional representation of machine elements `in sketch book such as thread profiles, nuts, bolts, studs, set screws, washers, Locking arrangements. Part I	V
11	Problem based Learning: Given the orthographic views of at least three objects with few missing lines, the student will try to imagine the corresponding objects, complete the views and draw these views in sketch book. Part I	III, II, V
12	Draw basic 2D entities like: Rectangle, Rhombus, Polygon using AutoCAD (Print out should be a part of progressive assessment). Part I	V
13	Draw basic 2D entities like: Circles, Arcs, circular using AutoCAD (Printout should be a part of progressive assessment). Part II	V
14	Draw basic 2D entities like: Circular and rectangular array using AutoCAD (Printout should be a part of progressive assessment). Part III	V
15	Draw blocks of 2D entities comprises of Rectangle, Rhombus, Polygon, Circles, Arcs, circular and rectangular array, blocks using AutoCAD (Print out should be a part of progressive assessment). Part IV	V
16	Draw basic branch specific components in 2D using AutoCAD (Print out should be a part of term work). Part I	VI
17	Draw complex branch specific components in 2D using AutoCAD (Print should be a part of progressive assessment). Part I	VI
	Total	

SUGGESTED LEARNING RESOURCES

1. Bureau of Indian Standards. *Engineering Drawing Practice for Schools and Colleges IS: Sp-46*. BIS. Government of India, Third Reprint, October 1998; ISBN: 81-7061-091-2.
2. Bhatt, N. D. *Engineering Drawing*. Charotar Publishing House, Anand, Gujarat 2010; ISBN: 978-93- 80358-17-8.
3. Jain & Gautam, Engineering Graphics & Design, Khanna Publishing House, New Delhi (ISBN: 978- 93-86173-478)
4. Jolhe, D. A. *Engineering Drawing*. Tata McGraw Hill Edu. New Delhi, 2010; ISBN: 978-0-07- 064837-1
5. Dhawan, R. K. *Engineering Drawing*. S. Chand and Company, New Delhi; ISBN: 81-219-1431-0.
6. Shah, P. J. *Engineering Drawing*. S. Chand and Company, New Delhi, 2008, ISBN:81-219-2964-4.
7. Kulkarni, D. M.; Rastogi, A. P.; Sarkar, A. K. *Engineering Graphics with AutoCAD*. PHI Learning Pri- vate Limited-New Delhi (2010); ISBN: 978-8120337831.
8. Jeyapoovan, T. *Essentials of Engineering Drawing and Graphics using AutoCAD*. Vikas Publishing HousePvt. Ltd, Noida, 2011; ISBN: 978-8125953005.
9. Autodesk. *AutoCAD User Guide*. Autodesk Press, USA, 2015.

10. Sham, Tickoo. *AutoCAD 2016 for Engineers and Designers*. Dreamtech Press; Galgotia Publication, New Delhi, 2015; ISBN 978-9351199113.

Software/Learning Websites

1. <https://www.youtube.com/watch?v=TJ4jGyD-WCw>
2. https://www.youtube.com/watch?v=dmt6_n7Sgcg
3. <https://www.youtube.com/watch?v=MQScnLXL0M>
4. <https://www.youtube.com/watch?v=3WXPanCq9LI>
5. <https://www.youtube.com/watch?v=fvjk7PlxAuo>
6. <http://www.me.umn.edu/coursesme2011/handouts/engg%20graphics.pdf>
7. <https://www.machinedesignonline.com>

Course Outcomes

Following outcomes will be achieved:

- 1) Select and construct appropriate drawing scales, use drawing equipment's, and understand Indian Standards of engineering drawing
- 2) Draw views of given object and components 3) Sketch orthographic projections into isometric projections and vice versa.
- 3) Apply computer aided drafting tools to create 2D engineering drawings

APPLIED PHYSICS LAB-I

Subject Code 2001106	Practical			No of Periods in One Session : 45		Credits 02
	No. of Periods Per Week			Full Marks	: 50	
	L	T	P/S	Internal(PA)	: 15	
		-	03	External(ESE)	: 35	

Course Objectives

Study of Applied Physics aims to give an understanding of physical world by observations and predictions. Concrete use of physical principles and analysis in various fields of engineering and technology is very prominence. The course aims to supplement the factual knowledge gained in the lecture by first hand manipulation of apparatus. This will develop scientific temper and help to apply the basic concepts and principles in solving engineering and technology based problems. In addition, students get necessary confidence in handling equipment and thus learn various skills in measurement.

List of Practical's (To perform minimum 10 practical's).

1. To measure length, radius of a given cylinder, a test tube and a beaker using a Vernier caliper and find volume of each object.
2. To determine diameter of a wire, a solid ball and thickness of cardboard using a screw gauge.
3. To determine radius of curvature of a convex and a concave mirror/surface using a spherometer.
4. To verify triangle and parallelogram law of forces.
5. To find the co-efficient of friction between wood and glass using a horizontal board.
6. To determine force constant of a spring using Hook's Law.
7. To verify law of conservation of mechanical energy (PE to KE).
8. To find the moment of inertia of a flywheel.
9. To find the viscosity of a given liquid (Glycerin) by Stokes law.
10. To find the coefficient of linear expansion of the material of a rod.
11. To determine atmospheric pressure at a place using Fortin's barometer.
12. To measure room temperature and temperature of a hot bath using mercury thermometer and convert it into different scales.

Learning Outcome:

After undergoing this lab work, the student will be able to:

- Select right kind of measuring tools (Meter scale, Vernier caliper, Screw gauge, Spherometer etc.) for determining dimensions of physical quantities and make measurements with accuracy and precision.
- Differentiate various shapes and determine dimensions of plane, curved and regular surfaces/bodies.
- Apply and Verify laws of forces and determine resultant force acting on a body.
- Appreciate role of friction and measure co-efficient of friction between different surfaces.
- Describe and verify Hook's law and determine force constant of spring body.
- Identify various forms of energy, energy transformations and verify law of conservation of energy.
- Understand rotational motion and determine M.I. of a rotating body (flywheel)
- Understand Stokes law for viscous liquids and determine viscosity of a given liquid.
- Understand how materials expand on heating and determine linear expansion coefficient for

a given material rod. Understand working and use Fortin's barometers for determining pressure at a place.

- Understand use of thermometers to measure temperature under different conditions and different scales of temperature measurements.

SUGGESTED STUDENT ACTIVITIES & STRATEGIES

Apart from classroom and laboratory learning following are the suggested student related activities which can be undertaken to accelerate the attainment of various outcomes of the course

- a. Make survey of different physical products and compare the following points
 - Measurements of dimensions
 - Properties
 - Applications
- b. Library survey regarding engineering materials/products used in different industries
- c. Seminar on any relevant topic.

Teachers should use the following strategies to achieve the various outcomes of the course.

- Different methods of teaching and media to be used to attain classroom attention.
- Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- 15-20% of the topics which are relatively simpler or descriptive in nature should be given to the students for self-learning and assess the development of competency through classroom presentations.
- Micro-projects may be given to group of students for hand-on experiences.

References:

1. Text Book of Physics for Class XI& XII (Part-I, Part-II); N.C.E.R.T., Delhi
2. Comprehensive Practical Physics, Vol, I & II, JN Jaiswal, Laxmi Publications (P)Ltd.,
3. Practical Physics by C. L. Arora, S. Chand Publication.
4. e-books/e-tools/ learning physics software/YouTube videos/websites etc.

APPLIED CHEMISTRY LAB

Subject Code 2001107	Practical			No of Periods in One Session : 45			Credits 02
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal(PA)	:	15	
		-	03	External(ESE)	:	35	

Course Objectives:

There are numerous number of materials used in fabricating and manufacturing devices for the comfort of life. The selection, characterization and suitability assessment of natural raw materials essentially requires principles and concepts of Applied Chemistry for students. The course aims to supplement the factual knowledge gained in the lectures by first hand manipulation of processes and apparatus. This will develop scientific temper and help to apply the basic concepts and principles in solving technology based problems. In addition, students will get necessary confidence in handling equipments and thus learn various skills in measurement.

List of Practicals : Perform any 12 (twelve) Practicals :-

1. Preparation of 250ml N/10 Oxalic acid Solution.
2. Preparation of 250ml N/10 Sodium Carbonate Solution.
3. To determine the strength of Sodium Hydroxide Solution by Titrating against Oxalic Acid Solution.
4. Determination of Temporary Hardness of Tap Water.
5. Gravimetric Estimation of Moisture in given Coal Sample.
6. Determination of Percentage of Water of Crystallization in Barium Chloride.
7. Preparation of Cupric Oxide from Copper Sulphate.
8. Preparation of Barium Sulphate from Barium Chloride.
- 9-11. Qualitative Analysis of Three Solutions containing One Basic and One Acid radicals Listed below.

Basic radicals – NH_4^+ , Pb^{+2} , Cu^{+2} , Ni^{+2} , Zn^{+2} , Fe^{+2} .

Acid radicals – Cl^- , Br^- , I^- , NO_3^- , CO_3^{2-} , SO_4^{2-} .

12. Determination of Viscosity of Lubricating Oil Using Ostwald Viscometer.
13. To Verify Faradays First Law of Electrolysis.
14. To determine pH of given solution by pH meter.
15. Prepare Phenol Formaldehyde Resin (Bakelite)
16. To Determine Dissolved Oxygen in given Sample of Water.

Learning Outcomes:

At the end of the course student will be able to

- To express quantitative measurements accurately.
- To practice and adapt good measuring techniques.
- To use various apparatus for precise measurements.
- To understand and differentiate different methods of quantitative analysis.
- To know and understand principles of quantitative analysis using instruments.

- To construct different electrochemical cells used in developing batteries.
- To understand and appreciate methods of corrosion abatements.

Reference Books:

1. Text Book of Chemistry for Class XI & XII (Part-I, Part-II); N.C.E.R.T., Delhi, 2017-18.
2. Dr. G. H. Hugar and Prof A. N. Pathak, Applied Chemistry Laboratory Practices, Vol. I and Vol. II, NITTTR, Chandigarh, Publications, 2013-14.
3. Agnihotri, Rajesh, Chemistry for Engineers, Wiley India Pvt.Ltd., 2014.
4. Jain & Jain, Engineering Chemistry, Dhanpat Rai and Sons; New Delhi, 2015.

COMMUNICATION SKILLS IN ENGLISH LAB

Subject Code 2001108	Practical			No of Periods in One Session : 45			Credits 02
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal(PA)	:	15	
		-	03	External(ESE)	:	35	

Course Objectives:

Communication skills play an important role in career development. This lab course aims at actively involving students in various activities to improve their communication skills with an emphasis on developing personality of the students. Thus, the objectives of this course are:

1. To develop listening skills for enhancing communication.
2. To develop speaking skills with a focus on correct pronunciation and fluency.
3. To introduce the need for Personality development- Focus will be on developing certain qualities which will help students in handling personal and career challenges, leadership skills etc. For that purpose group discussion, extempore and other activities should be conducted during lab classes.

Course Content:

UNIT- 1 Listening Skills

Listening Process and Practice: Introduction to recorded lectures, poems, interviews and speeches, listening tests.

UNIT- II Introduction to Phonetics

Sounds: consonant, vowel, diphthongs, etc. transcription of words (IPA), weak forms, syllable division, word stress, intonation, voice etc.

UNIT- III Speaking Skills

Standard and formal speech: Group discussion, oral presentations, public speaking, extempore speech, business presentations conversation practice and role playing, mock interviews etc.

UNIT- IV Building Vocabulary

Etymological study of words and construction of words, phrasal verbs, idioms and phrases.

Jargon/ Register related to organizational set up, word exercises and word games to enhance self-expression and vocabulary of participants.

Recommended Readings:

1. Daniel Jones. *The Pronunciation of English*. Cambridge: Cambridge University Press, 1956.
2. James Hartman& et al. Ed. *English Pronouncing Dictionary*. Cambridge: Cambridge University Press 2006.
3. Kulbhushan Kumar, Effective Communication Skills, Khanna Publishing House, New Delhi (Revised Ed. 2018)
4. J.D.O'Connor. *Better English Pronunciation*. Cambridge: Cambridge University Press, 1980.
5. Lindley Murray. *An English Grammar: Comprehending Principles and Rules*. London: Wilson and Sons, 1908.
6. Margaret M. Maison. *Examine your English*. Orient Longman: New Delhi, 1964.
7. J.Sethi & et al. *A Practice Course in English Pronunciation*. New Delhi: Prentice Hall, 2004.
8. Pfeiffer, William Sanborn and T.V.S Padmaja. *Technical Communication: A Practical Approach*. 6th ed. Delhi: Pearson, 2007.

Learning Outcome:

- At the end of this course the students will be able to communicate effectively with an increase in their confidence to read, write and speak English fluently.
- They will also demonstrate a significant increase in word power.
- The variety of exercises and activities that will be conducted in the Language Lab will develop their skills needed to participate in a conversation like listening carefully and respectfully to others' viewpoints; articulating their own ideas and questions clearly and over all students will be able to prepare, organize, and deliver an engaging oral presentation.
- They will also develop non-verbal communication such as proper use of body language and gestures.

ENGINEERING WORKSHOP PRACTICE

Subject Code 2001109	Term Work			No of Periods in One Session : 90			Credits 02
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal(PA)	:	07	
		-	06	External(ESE)	:	18	

Course Objectives:

- To understand basic engineering processes for manufacturing and assembly.
- To understand, identify, select and use various marking, measuring, and holding, striking and cutting tools and equipment's
- To understand and interpret job drawings, produce jobs, and inspect the job for specified dimensions
- To understand the various types of wiring systems and acquire skills in house wiring
- To understand, operate, control different machines and equipment's adopting safety practices

Course Content:

I Carpentry: i) Demonstration of different wood working tools / machines. [16]
 ii) Demonstration of different wood working processes, like plaining, marking, chiseling, grooving, turning of wood etc. iii) One simple job involving any one joint like mortise and tenon dovetail, bridle, half lap etc.

II Fitting: i) Demonstration of different fitting tools and drilling machines and power tools [16]
 ii) Demonstration of different operations like chipping, filing, drilling, tapping, sawing, cutting etc.
 iii) One simple fitting job involving practice of chipping, filing, drilling, tapping, cutting etc

III Welding: i) Demonstration of different welding tools / machines. ii) Demonstration on Arc [16]
 15]Welding, Gas Welding, MIG, MAG welding, gas cutting and rebuilding of broken parts with welding. iii) One simple job involving butt and lap joint

IV Sheet Metal Working: i) Demonstration of different sheet metal tools / machines. [16]
 ii) Demonstration of different sheet metal operations like sheet cutting, bending, edging, end curling, lancing, soldering, brazing, and riveting. iii) One simple job involving sheet metal operations and soldering and riveting.

V Electrical House Wiring: Practice on simple lamp circuits (i) one lamp controlled by one switch by surface conduit wiring, (ii) Lamp circuits- connection of lamp and socket by separate switches, (iii) Connection of Fluorescent lamp/tube light, (iv) simple lamp circuits-in- stall bedroom lighting. And (v) Simple lamp circuits- install stair case wiring. [16]

VI Demonstration: i) Demonstration of measurement of Current, Voltage, Power and Energy. [10]
 ii) Demonstration of advance power tools, pneumatic tools, electrical wiring tools and accessories. iii) Tools for Cutting and drilling

References:

1. S.K. Hajara Chaudhary, Workshop Technology, Media Promoters and Publishers, New Delhi, 2015
2. B.S. Raghuwanshi, Workshop Technology, Dhanpat Rai and sons, New Delhi 2014
3. K. Venkat Reddy, Workshop Practice Manual, BS Publications, Hyderabad 2014
4. Kents Mechanical Engineering Hand book, John Wiley and Sons, New York Course outcomes

At the end of the course, the student will be able to:

- CO1 Acquire skills in basic engineering practice to identify, select and use various marking, measuring, and holding, striking and cutting tools & equipment's and machines
- CO2 Understand job drawing and complete jobs as per specifications in allotted time
- CO3 Inspect the job for the desired dimensions and shape
- CO4 Operate, control different machines and equipment's adopting safety practices

SPORTS AND YOGA

Subject Code 2001110	Term Work			No of Periods in One Session : 30			Credits 02
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal(PA)	:	07	
		-	02	External(ESE)	:	18	

Course Objectives:

- To make the students understand the importance of sound health and fitness principles as they relate to better health.
- To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.
- To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury.
- To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health.

Course Content:

- **Introduction to Sports**
 - Meaning & Definition of Sports
 - Aims & Objectives of Physical Education
 - Awards and Honours in the Field of Sports in India (Dronacharya Award, Arjuna Award, Dhyanchand Award, Rajiv Gandhi Khel Ratna Award etc.)
- **Physical Fitness, Wellness & Lifestyle**
 - Meaning & Importance of Physical Fitness & Wellness
 - Components of Physical Fitness
 - Components of Wellness
 - Preventing Health Threats through Lifestyle Change
 - Concept of Positive Lifestyle
- **Postures**
 - Meaning and Concept of Postures.
 - Causes of Bad Posture.
 - Concept & Advantages of Correct Posture.
- **Yoga**
 - Meaning & Importance of Yoga
 - Elements of Yoga
 - Introduction - Asanas, Pranayama, Meditation & Yogic Kriyas
 - Yoga for Concentration & Related Asanas (Sukhasana; Tadasana; Padmasana & Sha-shankasana)

- **Yoga & Lifestyle**
 - Asanas as Preventive Measures.
 - Hypertension: Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana.
 - Obesity: Procedure, Benefits & Contraindications for Vajrasana.
 - Back Pain: Tadasana, Ardha Matsyendrasana, Bhujangasana.
 - Diabetes: Procedure, Benefits & Contraindications for Bhujangasana, Paschimottasana, Ardha Matsyendrasana.
 - Asthma: Procedure, Benefits & Contraindications for Sukhasana, Bhujangasana , Matsyasana.
- **Psychology & Sports**
 - Psychological Benefits of Exercise.
 - Anxiety & Fear and Its Effects on Sports Performance.
 - Motivation, Its types & Techniques.
 - Understanding Stress & Coping Strategies.
- **Sports / Games**

Following sub topics related to any one Game/Sport of choice of student out of: Athletics, Badminton, Chess, Cricket, Kabaddi, Table Tennis, Volleyball, Yoga etc.

 - History of the Games/Sport.
 - Latest General Rules of the Games/Sports.
 - Specifications of Play Fields and Related Sports Equipment.
 - Important Tournaments and Venues.
 - Sports Personalities.

References:

1. Modern Trends and Physical Education by Prof. Ajmer Singh.
2. Light On Yoga By B.K.S. Iyengar.
3. Health and Physical Education – NCERT (11th and 12th Classes)

Course Outcomes:

On successful completion of the course the students will be able to:

- (i) Practice Physical activities and Hatha Yoga focusing on Yoga for strength, flexibility, and relaxation.
- (ii) Learn techniques for increasing concentration and decreasing anxiety which leads to stronger academic performance.
- (iii) Learn breathing exercises and healthy fitness activities
- (iv) Understand basic skills associated with yoga and physical activities including strength and flexibility, balance and coordination.

- (v) Perform Yoga movements in various combination and forms.
- (vi) Assess current personal fitness levels.
- (vii) Identify opportunities for participation in Yoga and Sports activities.
- (viii) Develop understanding of health-related fitness components: cardiorespiratory endurance, flexibility and body composition etc.
- (ix) Improve personal fitness through participation in Sports and Yogic activities.
- (x) Develop understanding of psychological problems associated with the age and lifestyle.
- (xi) Demonstrate an understanding of sound nutritional practices as related to health and physical performance.
- (xii) Assess Yoga activities in terms of fitness value.
- (xiii) Identify and apply injury prevention principles related to Yoga and physical fitness activities.
- (xiv) Understand and correctly apply biomechanical and physiological principles related to exercise and training.

C / KYP / IT ESSENTIAL / PYTHON / OTHERS

Subject Code 2001111	Term Work			No of Periods in One Session : 30			Credits 01
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal(PA)	:	15	
		-	02	External(ESE)	:	35	

STATE BOARD OF TECHNICAL EDUCATION, BIHAR

Scheme of Teaching and Examinations for

IInd Semester

(Effective from Session 2020-21)

THEORY

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME			Hours of Exam.	Teacher's Assessment (TA) Marks (A)	EXAMINATION – SCHEME					Credits			
			Periods per Week					Class Test(CT) Marks (B)	End Semester Exam. (ESE) Marks (C)	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject				
			L	T	L+T											
1.	Mathematics-II	2002201	03	01	04	03	10	20	70	100	28	40	04			
2.	Applied Physics-II	2002202	02	01	03	03	10	20	70	100	28	40	03			
3.	Introduction to IT Systems	2002203	02	01	03	03	10	20	70	100	28	40	02			
4.	Fundamental of Electrical & Electronics Engg.	2002204	02	01	03	03	10	20	70	100	28	40	03			
5.	Engg. Mechanics	2002205	02	01	03	03	10	20	70	100	28	40	03			
	Total:-		11	05	16					350	500		15			

PRACTICAL

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME	EXAMINATION – SCHEME					Credits	
				Periods per Week	Hours of Exam.	Practical		Total Marks	Pass Marks in the Subject	
						Internal(PA)	External(ESE)			
6.	Applied Physics Lab-II	2002206	02	03	15	35	50	20	01	
7.	Introduction to IT Systems Lab	2002207	04	03	15	35	50	20	02	
8.	Fundamental of Electrical & Electronics Engg. Lab	2002208	04	03	15	35	50	20	01	
9.	Engg. Mechanics Lab	2002209	03	03	15	35	50	20	02	
	Total:-		13					200		06

TERM WORK

Sr. No.	SUBJECTS	SUBJECT CODE	TEACHING SCHEME	EXAMINATION – SCHEME				Credits
				Periods per week	Marks of Internal (PA)	Marks of External (ESE)	Total Marks	
10.	Course under MOOCS / SWAYAM / ETC / Others	2002210	-	06	14	20	08	02
11.	KYP/IT Essential/Python/Others	2002211	-	06	14	20	08	01
12.	Environmental Science	2002212	02	10	-	10	04	-
	Total:-		02				50	03
Total Periods per week Each of duration One Hours 31							Total Marks = 750	24

MATHEMATICS - II

Subject Code 2002201	Theory			No of Periods in One Session : 60			Credits 04
	No. of Periods Per Week			Full Marks		100	
	L	T	P/S	ESE	:	70	
	03	01	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:

This course is designed to give a comprehensive coverage at an introductory level to the subject of Differential Calculus, Integral Calculus, First Order Differential Equations and Basic elements of vector algebra.

Course Content:

UNIT - I: Differential Calculus

[18]

Definition of function; Types of function & simple examples, Concept of limits. Four standard limits

$$\lim_{x \rightarrow a} \frac{x^n - a^n}{x - a}, \quad \lim_{x \rightarrow 0} \frac{\sin x}{x}, \quad \lim_{x \rightarrow a} \left(\frac{a^x - 1}{x} \right) \quad \lim_{x \rightarrow a} (1 + x)^{\frac{1}{x}}$$

Concept of Continuity (Simple Problems)

Differentiation by definition of x^n , $\sin x$, $\cos x$, $\tan x$ and $\log_a x$. Differentiation of sum, product and quotient of functions. Differentiation of function of a function. Differentiation of trigonometric and inverse trigonometric functions, Logarithmic differentiation, Exponential functions. Differentiation of implicit and Parametric function. Differentiation of one function with respect to another function.

UNIT - II: Integral Calculus

[18]

Integration as inverse operation of differentiation. Simple integration by transformation, by substitution, by parts and by partial fractions (for linear factors only). Definite Integration & its properties, simple problems. Applications of integration for (i) Simple problem on evaluation of area bounded by a curve and axes. (ii) Area bounded by two curves. (Simple problems).

UNIT-III: Differential Equations

[08]

Definition of differential equations. Order and degree of a differential equation. Formation of differential equation. Solution of first order and first degree differential equation by variable separation method (simple problems). MATLAB – Simple Introduction.

UNIT - IV: Vector Algebra

[16]

Definition, notation and rectangular resolution of a vector. Addition and subtraction of vectors. Scalar and vector products of 2 vectors. Simple problems related to work, moment and angular velocity.

References:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 40th Edition, 2007.
2. S.S. Sabharwal, Sunita Jain, Eagle Parkashan, Applied Mathematics, Vol. I & II, Jalandhar.
3. Comprehensive Mathematics, Vol. I & II by Laxmi Publications, Delhi.
4. Mathematics today XI & XII (Part I & II) by Lalji Prasad (Paramount Publication, GovindMitra Road)
5. A Text Book of Mathematics-XI & XII (Vol-1 & Vol-2) - by K.C. Sinha- Rastogi Publication, Meerut.

Course Outcomes:

By the end of the course the students are expected to learn

- (i) the cumulative effect of the original quantity or equation is the Integration
- (ii) Tell the difference between a resultant and a concurrent force to model simple physical problems in the form of a differential equation, analyze and interpret the solutions.

APPLIED PHYSICS -II

Subject Code 2002202	Theory			No of Periods in One Session : 45			Credits 03	
	No. of Periods Per Week			Full Marks				
	L	T	P/S	ESE	:	100		
	02	01	-	TA	:	10		
	-	-	-	CT	:	20		

Course Objectives :-

Applied Physics aims to give an understanding of this world both by observation and by prediction of the way in which objects behave. Concrete use of physical principles and analysis in various fields of engineering and technology are given prominence in the course content. The course will help the diploma engineers to apply the basic concepts and principles to solve broad-based engineering problems and to understand different technology based applications.

Teaching Approach :-

Teachers should give examples from daily routine as well as, engineering/technology applications on various concepts and principles in each topic so that students are able to understand and grasp these concepts and principles. In all contents, SI units should be followed. Use of demonstration can make the subject interesting and develop scientific temper in the students. Student activities should be planned on all the topics.

Activity- Theory - Demonstrate/practice approach may be followed throughout the course so that learning may be outcome and employability based.

Course Content :-

UNIT - 1: Wave motion and its applications

[07]

Wave motion, transverse and longitudinal waves with examples, definitions of wave velocity, frequency and wave length and their relationship, Sound and light waves and their properties, wave equation ($y = r \sin \omega t$) amplitude, phase, phase difference, principle of superposition of waves and beat formation.

Simple Harmonic Motion (SHM): definition, expression for displacement, velocity, acceleration, time period, frequency etc. Simple harmonic progressive wave and energy transfer, study of vibration of cantilever and determination of its time period, Free, forced and resonant vibrations with examples.

Acoustics of buildings – reverberation, reverberation time, echo, noise, coefficient of absorption of sound, methods to control reverberation time and their applications, Ultrasonic waves – Introduction and properties, engineering and medical applications of ultrasonic.

UNIT - 2: Optics

[07]

Basic optical laws; reflection and refraction, refractive index, Images and image formation by mirrors, lens and thin lenses, lens formula, power of lens, magnification and defects. Total internal reflection, Critical angle and conditions for total internal reflection, applications of total internal reflection in optical fiber.

Optical Instruments; simple and compound microscope, astronomical telescope in

normal adjustment, magnifying power, resolving power, uses of microscope and telescope, optical projection systems.

UNIT - 3: Electrostatics

[06]

Coulombs law, unit of charge, Electric field, Electric lines of force and their properties, Electric flux, Electric potential and potential difference, Gauss law: Application of Gauss law to find electric field intensity of straight charged conductor, plane charged sheet and charged sphere. Capacitor and its working, Types of capacitors, Capacitance and its units. Capacitance of a parallel plate capacitor, Series and parallel combination of capacitors (related numerical), dielectric and its effect on capacitance, dielectric break down.

UNIT - 4: Current Electricity

[06]

Electric Current and its units, Direct and alternating current, Resistance and its units, Specific resistance, Conductance, Specific conductance, Series and parallel combination of resistances. Factors affecting resistance of a wire, carbon resistances and color coding.

Ohm's law and its verification, Kirchhoff's laws, Wheatstone bridge and its applications (slide wire bridge only), Concept of terminal potential difference and Electro motive force (EMF) Heating effect of current, Electric power, Electric energy and its units (related numerical problems), Advantages of Electric Energy over other forms of energy.

UNIT - 5: Electromagnetism

[06]

Types of magnetic materials; diamagnetic, Paramagnetic and ferromagnetic with their properties, Magnetic field and its units, magnetic intensity, magnetic lines of force, magnetic flux and units, magnetization. Concept of electromagnetic induction, Faraday's Laws, Lorentz force (force on moving charge in magnetic field). Force on current carrying conductor, force on rectangular coil placed in magnetic field. Moving coil galvanometer; principle, construction and working, Conversion of a galvanometer into ammeter and voltmeter.

UNIT - 6: Semiconductor Physics

[06]

Energy bands in solids, Types of materials (insulator, semi-conductor, conductor), intrinsic and extrinsic semiconductors, p-n junction, junction diode and V-I characteristics, types of junction diodes. Diode as rectifier – half wave and full wave rectifier (centre tapped).

Transistor; description and three terminals, Types- p-n-p and n-p-n, some electronic applications (list only). Photocells, Solar cells; working principle and engineering applications.

UNIT - 7: Modern Physics

[07]

Lasers: Energy levels, ionization and excitation potentials; spontaneous and stimulated emission; population inversion, pumping methods, optical feedback, Types of lasers; Ruby, He-Ne and semiconductor, laser characteristics, engineering and medical applications of lasers.

Fiber Optics: Introduction to optical fibers, light propagation, acceptance angle and numerical aperture, fiber types, applications in; telecommunication, medical and sensors.

Nano-science and Nanotechnology: Introduction, nano-particles and nano-materials, properties at nano-scale, nanotechnology, nanotechnology based devices and applications.

Learning Outcome:

After undergoing this subject, the student will be able to;

- a) Describe waves and wave motion, periodic and simple harmonic motions and solve simple problems. Establish wave parameters: frequency, amplitude, wavelength, and velocity and able to explain diffraction, interference, polarization of waves.
- b) Explain ultrasonic waves and engineering, medical and industrial applications of Ultrasonics. Apply acoustics principles to various types of buildings for best sound effect.
- c) State basic optical laws, establish the location of the images formed by mirrors and thin converging lens, design and assemble microscope using lenses combination.
- d) Describe refractive index of a liquid or a solid and will be able to explain conditions for total internal reflection.
- e) Define capacitance and its unit, explain the function of capacitors in simple circuits, and solve simple problems.
- f) Differentiate between insulators, conductors and semiconductors, and define the terms: potential, potential difference, electromotive force.
- g) Express electric current as flow of charge, concept of resistance, measure of the parameters: electric current, potential difference, resistance.
- h) List the effects of an electric current and its common applications, State Ohm's law, calculate the equivalent resistance of a variety of resistor combinations, distinguish between AC and DC currents, determine the energy consumed by an appliance,
- i) State the laws of electromagnetic induction, describe the effect on a current-carrying conductor when placed in a magnetic field.
- j) Explain the operation of appliances like moving coil galvanometer, simple DC motors.
- k) Apply the knowledge of diodes in rectifiers, power adapters and various electronic circuits. Use the knowledge of semiconductors in various technical gadgets like mobile phones, computers, LED, photocells, solar lights etc.
- l) Illustrate the conditions for light amplification in various LASER and laser based instruments and optical devices.
- m) Appreciate the potential of optical fiber in fields of medicine and communication.
- n) Express importance of nanoscience and nanotechnology and impact of nanotechnology to the society.

References:

1. Text Book of Physics for Class XI& XII (Part-I, Part-II); N.C.E.R.T., Delhi
2. Applied Physics, Vol. I and Vol. II, TTTI Publications, Tata McGraw Hill, Delhi
3. Concepts in Physics by HC Verma, Vol. I & II, Bharti Bhawan Ltd. New Delhi
4. Engineering Physics by PV Naik, Pearson Education Pvt. Ltd, New Delhi.
5. Modern approach to Applied Physics-I and II, AS Vasudeva, Modern Publishers.
6. A Textbook of Optics, N Subramanyam, Brij Lal, MN Avahanulu, S Chand and Company Ltd.
7. Introduction to Fiber Optics, Ajoy Ghatak and K Thyagarajan, Cambridge University Press India Pvt. Ltd, New Delhi.
8. Nanoscience and Nanotechnology, KK Choudhary, Narosa Publishing House, Pvt. Ltd. New Delhi.
9. Nanotechnology: Importance and Applications, M.H. Fulekar, IK International Publishing House Pvt. Ltd, New Delhi.
10. e-books/e-tools/ learning physics software/websites etc.

INTRODUCTION TO IT SYSTEMS

Subject Code 2002203	Theory			No of Periods in One Session : 45			Credits 02
	No. of Periods Per Week			Full Marks		:	
	L	T	P/S	ESE	:	100	
	02	01	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:-

This course is intended to make new students comfortable with computing environment Learning basic computer skills, Learning basic application software tools, Understanding Computer Hardware, Cyber security awareness

Course Content:-

UNIT 1: Basic Internet skills: Understanding browser, efficient use of search engines, awareness about Digital India portals (state and national portals) and college portals.
General understanding of various computer hardware components – CPU, Memory, Display, Keyboard, Mouse, HDD and other Peripheral Devices.

UNIT 2: OS Installation (Linux and MS Windows), Unix Shell and Commands, vi editor.

UNIT 3: HTML4, CSS, making basic personal webpage.

UNIT 4: Office Tools: Open Office Writer, Open Office Spreadsheet (Calc), Open Office Impress.

UNIT 5: Information security best practices. Class lectures will only introduce the topic or demonstrate the tool, actual learning will take place in the Lab by practicing regularly.

Suggested Lab Work:

This is a skill course. Topics/concepts taught in the class should be practiced in the Lab same week and practiced regularly during the semester till student becomes confident about it. This course is all about some theory and a lot of practice.

References:

- R.S. Salaria, Computer Fundamentals, Khanna Publishing House
- Ramesh Bangia, PC Software Made Easy – The PC Course Kit, Khanna Publishing House
- Online Resources, Linux man pages, Wikipedia
- Mastering Linux Shell Scripting: A practical guide to Linux command-line, Bash scripting, and Shell programming, by Mokhtar Ebrahim, Andrew Mallett

Course outcomes:

At the end of the course student will be able to comfortably work on computer, install and configure OS, assemble a PC and connect it to external devices, write documents, create worksheets, prepare presentations, protect information and computers from basic abuses/ attacks.

FUNDAMENTALS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Subject Code 2002204	Theory			No of Periods in One Session : 45			Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	02	01	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:-

To provide basic knowledge of the different elements and concepts of electrical engineering field and to learn basic concepts of various active and passive electronic components, Signals, Op-Amp and their applications, Digital Electronics and their applications to help students deal with electrical and electronics engineering principles and applications in industrial processes of different fields.

Course Content:-

UNIT- I Overview of Electronic Components & Signals:

Passive Active Components: Resistances, Capacitors, Inductors. Basic Concept of Diodes, Transistors, FET, MOS and CMOS and their Applications. Signals: DC / AC, voltage / current, periodic / non-periodic signals, Ideal / non-ideal voltage / current sources, independent / dependent voltage current sources.

UNIT- II Overview of Analog Circuits:

Operational Amplifiers-Ideal Op-Amp, Practical op amp, Open loop and closed loop configurations, Application of Op-Amp as amplifier, adder, differentiator and integrator.

UNIT- III Overview of Digital Electronics:

Introduction to Boolean Algebra, Electronic Implementation of Boolean Operations, Gates-Functional Block Approach,

UNIT - IV Electric and Magnetic Circuits:

EMF, Current, Potential Difference, Power and Energy; M.M.F, magnetic force, permeability, hysteresis loop, reluctance, leakage factor and BH curve; Electromagnetic induction, Faraday's laws of electromagnetic induction, Lenz's law; Dynamically induced emf; Statically induced emf; Equations of self and mutual inductance; Analogy between electric and magnetic circuits.

UNIT - V A.C. Circuits:

Cycle, Frequency, Periodic time, Amplitude, Angular velocity, RMS value, Average value, Form Factor Peak Factor, impedance, phase angle, and power factor KCL and KVL Mathematical and phasor representation of alternating emf and current; Voltage and Current relationship in Star and Delta connections; A.C in resistors, inductors and capacitors; A.C in R-L series, R-C series, R-L-C series Circuits.

UNIT VI Transformer and Machines: General construction and principle of different type of

transformers; Emf equation and transformation ratio of transformers; Auto transformers; Construction and Working principle of motors; Basic equations and characteristic of motors.

References:

1. Ritu Sahdev, Basic Electrical Engineering, Khanna Publishing House
2. Mittal and Mittal, Basic Electrical Engineering, McGraw Education, New Delhi, 2015, ISBN : 978-0-07-0088572-5
3. Saxena, S. B. Lal, Fundamentals of Electrical Engineering, Cambridge University Press, latest edition ISBN : 9781107464353
4. Theraja, B. L., Electrical Technology Vol – I, S. Chand Publications, New Delhi, 2015, ISBN: 9788121924405
5. Theraja, B. L., Electrical Technology Vol – II, S. Chand Publications, New Delhi, 2015, ISBN: 9788121924375
6. Jegathesan, V., Basic Electrical and Electronics Engineering, Wiley India, New Delhi, 2015, ISBN : 97881236529513
7. Sedha, R.S., A text book of Applied Electronics, S.Chand, New Delhi, 2008, ISBN-13: 978-8121927833
8. Malvino, Albert Paul, David, Electronics Principles, McGraw Hill Education, New Delhi, 2015, ISBN-13: 0070634244-978
9. Mehta, V.K., Mehta, Rohit, Principles of Electronics, S. Chand and Company, New Delhi, 2014, ISBN-13-9788121924504
10. Bell Devid, Fundamental of Electronic Devices and Circuits, Oxford University Press, New Delhi 2015 ISBN : 9780195425239

ENGINEERING MECHANICS

Subject Code 2002205	Theory			No of Periods in One Session : 45			Credits 03
	No. of Periods Per Week			Full Marks		:	100
	L	T	P/S	ESE	:	70	
	02	01	-	TA	:	10	
	-	-	-	CT	:	20	

Course Objectives:-

Following are the objectives of this course:

- 1) To obtain resultant of various forces
- 2) To calculate support reactions through conditions of equilibrium for various structures
- 3) To understand role of friction in equilibrium problems
- 4) To know fundamental laws of machines and their applications to various engineering problems

Course Contents:-

UNIT – I Basics of mechanics and force system

[11]

Significance and relevance of Mechanics, Applied mechanics, Statics, Dynamics. Space, time, mass, particle, flexible body and rigid body. Scalar and vector quantity, Units of measurement (SI units) - Fundamental units and derived units.

Force – unit, representation as a vector and by Bow's notation, characteristics and effects of a force, Principle of transmissibility of force, Force system and its classification.

Resolution of a force - Orthogonal components of a force, moment of a force, Varignon's Theorem.

Composition of forces – Resultant, analytical method for determination of resultant for concurrent, non-concurrent and parallel co-planar force systems – Law of triangle, parallelogram and polygon of forces.

UNIT– II Equilibrium

[10]

Equilibrium and Equilibrant, Free body and Free body diagram, Analytical and graphical methods of analysing equilibrium Lami's Theorem – statement and explanation, Application for various engineering problems. Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple), Beam reaction for cantilever, simply supported beam with or without overhang – subjected to combination of Point load and uniformly distributed load. Beam reaction graphically for simply supported beam subjected to vertical point loads only.

UNIT– III Friction

[06]

Friction and its relevance in engineering, types and laws of friction, limiting equilibrium, limiting friction, co-efficient of friction, angle of friction, angle of repose, relation between co-efficient of friction and angle of friction.

Equilibrium of bodies on level surface subjected to force parallel and inclined to

plane. Equilibrium of bodies on inclined plane subjected to force parallel to the plane only.

UNIT– IV Centroid and centre of gravity

[08]

Centroid of geometrical plane figures (square, rectangle, triangle, circle, semicircle, quarter circle) Centroid of composite figures composed of not more than three geometrical figures Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids.

UNIT – V Simple lifting machine

[10]

Simple lifting machine, load, effort, mechanical advantage, applications and advantages. Velocity ratio, efficiency of machines, law of machine. Ideal machine, friction in machine, maximum Mechanical advantage and efficiency, reversible and non-reversible machines, conditions for reversibility Velocity ratios of Simple axle and wheel, Differential axle and wheel, Worm and worm wheel, Single purchase and double purchase crab winch, Simple screw jack, Weston's differential pulley block, geared pulley block.

Suggested Learning Resources:

1. D.S. Bedi, Engineering Mechanics, Khanna Publications, New Delhi (2008)
2. Khurmi, R.S., Applied Mechanics, S. Chand & Co. New Delhi.
3. Bansal R K, A text book of Engineering Mechanics, Laxmi Publications.
4. Ramamrutham, Engineering Mechanics, S. Chand & Co. New Delhi.
5. Dhade, Jamadar & Walawelkar, Fundamental of Applied Mechanics, Pune Vidhyarthi Gruh.
6. Ram, H. D.; Chauhan, A. K., Foundations and Applications of Applied Mechanics, Cam- bridge University Press.
7. Meriam, J. L., Kraige, L.G., Engineering Mechanics- Statics, Vol. I, Wiley Publication, New Delhi.

Course outcomes:

After completing this course, student will be able to:

1. Identify the force systems for given conditions by applying the basics of mechanics.
2. Determine unknown force(s) of different engineering systems.
3. Apply the principles of friction in various conditions for useful purposes.
4. Find the centroid and centre of gravity of various components in engineering systems.
5. Select the relevant simple lifting machine(s) for given purposes.

APPLIED PHYSICS LAB II

Subject Code 2002206	Practical			No of Periods in One Session : 30			Credits 01	
	No. of Periods Per Week			Full Marks : 50				
	L	T	P/S	Internal(PA) : 15				
	-	-	02	External(ESE) : 35				
	-	-	-	-	-	-		

Course Objectives:

Concrete use of physical principles and analysis in various fields of engineering and technology is very prominence. The course aims to supplement the factual knowledge gained in the lecture by first hand manipulation of apparatus. This will develop scientific temper and help to apply the basic concepts and principles in solving engineering and technology based problems. In addition, students get necessary confidence in handling equipment and thus learn various skills in measurement.

List of Practical's (To perform minimum 12 Practical's)

1. To determine and verify the time period of a cantilever.
2. To determine velocity of ultrasonic in different liquids using ultrasonic interferometer.
3. To verify laws of reflection from a plane mirror/interface.
4. To verify laws of refraction (Snell's law) using a glass slab.
5. To determine focal length and magnifying power of a convex lens.
6. To verify Ohm's law by plotting graph between current and potential difference.
7. To verify laws of resistances in series and parallel combination.
8. To find the frequency of AC main using electrical vibrator.
9. To verify Kirchhoff's law using electric circuits.
10. To study the dependence of capacitance of a parallel plate capacitor on various factors and determines permittivity of air at a place.
11. To find resistance of a galvanometer by half deflection method.
12. To convert a galvanometer into an ammeter.
13. To convert a galvanometer into a voltmeter.
14. To draw V-I characteristics of a semiconductor diode (Ge, Si) and determine its knee voltage.
15. To verify inverse square law of radiations using a photo-electric cell.
16. To measure wavelength of a He-Ne/diode laser using a diffraction grating.
17. To measure numerical aperture (NA) of an optical fiber.
18. Study of an optical projection system (OHP/LCD) - project report.

Suggested Student Activities & Strategies :-

Apart from classroom and laboratory learning following are the suggested student related activities which can be undertaken to accelerate the attainment of various outcomes of the course.

a. Make survey of different physical products and compare the following points

- Measurements of dimensions
- Properties
- Applications

b. Library survey regarding engineering materials/products used in different industries

c. Seminar on any relevant topic.

Teachers should use the following strategies to achieve the various outcomes of the course.

- Different methods of teaching and media to be used to attain classroom attention.
- Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- 15-20% of the topics which are relatively simpler or descriptive in nature should be given to the students for self-learning and assess the development of competency through classroom presentations/projects.
- Micro-projects on relevant may be given to group of students for hand-on experiences.

Learning Outcome:

After undergoing this subject, the student will be able to;

- Apply concept of vibrations and determine the time period of vibrating objects.
- Use of equipment for determining velocity of ultrasonics in different liquids.***
- Verify optical laws; reflection, refraction from plane interfaces and surfaces.
- Apply knowledge of optics to determine focal length and magnifying power of optical lenses.
- Understand uses of electrical components and meters and verify Ohm's law for flow of current.
- Quantify resistances and verify laws of series and parallel combination of resistances.
- Apply concept of electrical vibrations in determine frequency of AC main.
- Analyse electrical circuits and verify Kirchhoff's law governing electrical circuits.
- Measure resistance of a galvanometer and how it is converted into an ammeter and voltmeter.
- Investigate characteristics of semiconductor diodes, photoelectric cells and determine operational parameters associated with their performance.
- Work with laboratory lasers and understand method to measure the wavelength of the light emitted from a laser.

- l) Handle optical fibers and determine numerical aperture of given optical fiber.
- m) Understand construction and working of an optical projection system.

Recommended Books:

1. Text Book of Physics for Class XI& XII (Part-I, Part-II); N.C.E.R.T., Delhi
2. Comprehensive Practical Physics, Vol, I & II, JN Jaiswal, Laxmi Publications (P) Ltd., New Delhi
3. Practical Physics by C. L. Arora, S. Chand & Company Ltd.
4. e-books/e-tools/ learning physics software/you Tube videos/ websites etc.

INTRODUCTION TO IT SYSTEMS LAB

Subject Code 2002207	Practical			No of Periods in One Session : 60			Credits 02	
	No. of Periods Per Week			Full Marks : 50				
	L	T	P/S	Internal(PA) : 15	External(ESE) : 35			
	-	-	04	-	-	-		
	-	-	-	-	-	-		
	-	-	-	-	-	-		

Course Objectives: -

This Lab course is intended to practice whatever is taught in theory class of 'Introduction of IT Systems' and become proficient in using computing environment - basic computer skills, basic application software tools, Computer Hardware, cyber security features, etc.

Course Content: -

S.No. Topics for Practice

- 1 Browser features, browsing, using various search engines, writing search queries
- 2 Visit various e-governance/Digital India portals, understand their features, services offered
- 3 Read Wikipedia pages on computer hardware components, look at those components in lab, identify them, recognize various ports/interfaces and related cables, etc.
- 4 Install Linux and Windows operating system on identified lab machines, explore various options, do it multiple times
- 5 Connect various peripherals (printer, scanner, etc.) to computer, explore various features of peripheral and their device driver software.
- 6 Practice HTML commands, try them with various values, make your own Webpage
- 7 Explore features of Open Office tools, create documents using these features, do it multiple times
- 8 Explore security features of Operating Systems and Tools, try using them and see what happens.

This is a skill course. More you practice, better it will be.

References:

1. Online resources, Linux man pages, Wikipedia.
2. R.S. Salaria, Computer Fundamentals, Khanna Publishing House.
3. Ramesh Bangia, PC Software Made Easy – The PC Course Kit, Khanna Publishing House.
4. Mastering Linux Shell Scripting: A practical guide to Linux command-line, Bash scripting, and Shell programming, by Mokhtar Ebrahim, Andrew Mallett.
5. IT Essentials PC Hardware and Software Companion Guide, Davis Anfinson and Ken Quamme, CISC Press, Pearson Education.
6. PC Hardware and A+ Handbook, Kate J. Chase PHI (Microsoft).

Course outcomes:-

At the end of the course student will be able to comfortably work on computer, install and configure OS, assemble a PC and connect it to external devices, write documents, create worksheets, prepare presentations, protect information and computers from basic abuses/attacks.

FUNDAMENTALS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB

Subject Code 2002208	Practical			No of Periods in One Session : 60			Credits 01
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal(PA)	:	15	
	-	-	04	External(ESE)	:	35	
	-	-	-	-	:	-	

Suggested Practicals/Exercises:

The practical in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency.

S. No.	Practical Outcomes (PrOs)	Approx. Hrs.
1.	Determine the permeability of magnetic material by plotting its B-H curve.	05
2.	Measure voltage, current and power in 1-phase circuit with resistive load.	05
3.	Measure voltage, current and power in R-L series circuit.	05
4.	Determine the transformation ratio (K) of 1-phase transformer.	05
5.	Connect single phase transformer and measure input and output quantities.	05
6.	Make Star and Delta connection in induction motor starters and measure the line and phase values.	05
7.	Identify various passive electronic components in the given circuit	05
8.	Connect resistors in series and parallel combination on bread board and measure its value using digital multimeter.	05
9.	Connect capacitors in series and parallel combination on bread board and measure its value using multimeter.	05
10.	Use multimeter to measure the value of given resistor.	05
11.	Determine the value of given resistor using digital multimeter to confirm with colour code.	05
12.	Test the PN-junction diodes using digital multimeter.	05
	Total	60

References:

1. Ritu Sahdev, Basic Electrical Engineering, Khanna Publishing House, 2018
2. Mittal and Mittal, Basic Electrical Engineering, McGraw Education, New Delhi, 2015, ISBN : 978-0-07-0088572-5
3. Saxena, S. B. Lal, Fundamentals of Electrical Engineering, Cambridge University Press, latest edition ISBN : 9781107464353
4. Theraja, B. L., Electrical Technology Vol – I, S. Chand publications, New Delhi, 2015, ISBN: 9788121924405

5. Theraja, B. L., Electrical Technology Vol – II, S. Chand publications, New Delhi, 2015, ISBN: 9788121924375
6. Jegathesan, V., Basic Electrical and Electronics Engineering, Wiley India, New Delhi, 2015, ISBN : 97881236529513
7. Sedha, R.S., A text book of Applied Electronics, S.Chand ,New Delhi, 2008, ISBN-13: 978-8121927833
8. Malvino, Albert Paul, David, Electronics Principles, McGraw Hill Education, New Delhi, 2015, ISBN-13: 0070634244-978
9. Mehta, V.K., Mehta, Rohit, Principles of Electronics, S. Chand and Company, New Delhi, 2014, ISBN-13-9788121924504
10. Bell Devid, Fundamental of Electronic Devices and Circuits, Oxford University Press, New Delhi 2015 ISBN : 9780195425239

Suggested Softwares/Learning Websites:

- a. en.wikipedia.org/wiki/Transformer
- b. www.animations.physics.unsw.edu.au/jw/AC.html
- c. www.alpharubicon.com/altenergy/understandingAC.htm
- d. [www.electronics-tutorials](http://www.electronics-tutorials.com)
- e. learn.sparkfun.com/tutorials/transistors
- f. www.pitt.edu/~qiw4/Academic/ME2082/Transistor%20Basics.pdf
- g. www.technologystudent.com/elec1/transis1.htm
- h. www.learningaboutelectronics.com
- i. www.electrical4u.com

Course Outcomes:

At the end of the course student will be able to:

1. Understand basic principle and operation of electric circuits and machines.
2. Solve basic problems related to electrical circuits and machines. Explain the operation of different electrical technologies.
3. Demonstrate an understanding of the control systems.
4. Understand the basic circuit elements
5. Understand different types of signal waveforms.
6. Understand logic gates and apply them in various electronic circuits.
7. Understand the basic concepts of op-amps, and their applications.
8. Use relevant electric/electronic protective devices safely.

ENGINEERING MECHANICS LAB.

Subject Code 2002209	Practical			No of Periods in One Session : 45			Credits 02	
	No. of Periods Per Week			Full Marks : 50				
	L	T	P/S	Internal(PA) : 15				
	-	-	03	External(ESE)	:	35		
	-	-	-	-	:	-		

Course Objectives:

Following are the objectives of this course:

- 1) To obtain resultant of various forces
- 2) To calculate support reactions through conditions of equilibrium for various structures
- 3) To understand role of friction in equilibrium problems
- 4) To know fundamental laws of machines and their applications to various engineering problems

List of Practical to be performed (Perform any 10 Practicals) :

1. Determine resultant of concurrent force system applying Law of Polygon of forces using force table.
2. Verify Lami's theorem.
3. Study forces in various members of Jib crane.
4. Determine support reactions for simply supported beam.
5. Determine coefficient of friction for motion on horizontal and inclined plane.
6. Determine centroid of geometrical plane figures.
7. To find the M.A., V.R., Efficiency and law of machine for Simple Screw Jack.
8. To find the M.A., V.R., Efficiency and law of machine for Differential Axle and Wheel.
9. Derive Law of machine using Worm and worm wheel.
10. Derive Law of machine using Single purchase crab.
11. Derive Law of machine using double purchase crab.
12. Derive Law of machine using Weston's differential or wormed geared pulley block.

Suggested Learning Resources:

1. Bedi D.S., Engineering Mechanics, Khanna Publishing House
2. Khurmi, R.S., Applied Mechanics, S.Chand & Co. New Delhi.
3. Bansal R K, A text book of Engineering Mechanics, Laxmi Publications.
4. Ramamrutham, Engineering Mechanics, S.,S Chand & Co. New Delhi.
5. Dhade, Jamadar & Walawelkar, Fundamental of Applied Mechanics, Pune Vidhyarthi Gruh.
6. Ram, H. D.; Chauhan, A. K. Foundations and Applications of Applied Mechanics, Cambridge University Press.
7. Meriam, J. L., Kraige, L.G. , Engineering Mechanics- Statics, Vol. I, Wiley Publication, New Delhi.

Course outcomes:

After completing this course, student will be able to

1. Identify the force systems for given conditions by applying the basics of mechanics.
2. Determine unknown force(s) of different engineering systems.
3. Apply the principles of friction in various conditions for useful purposes.
4. Find the centroid and centre of gravity of various components in engineering systems.
5. Select the relevant simple lifting machine(s) for given purposes.

COURSE UNDER MOOCS / SWAYAM / ETC / OTHERS

Subject Code 2002210	Term Work			No of Periods in One Session :			Credits 02
	No. of Periods Per Week			Full Marks	:	20	
	L	T	P/S	Internal(PA)	:	06	
	-	-	-	External(ESE)	:	14	
	-	-	-	-	:	-	

KYP / IT ESSENTIAL / PYTHON / OTHERS

Subject Code 2002211	Term Work			No of Periods in One Session :			Credits 01
	No. of Periods Per Week			Full Marks	:	20	
	L	T	P/S	Internal	:	06	
	-	-	-	External Comm.	:	14	
	-	-	-	-	:	-	

ENVIRONMENTAL SCIENCE

Subject Code 2002212	Term Work			No of Periods in One Session : 30		Credits -
	No. of Periods Per Week			Full Marks	:	
	L	T	P/S	Internal(PA)	:	
	-	-	02		:	
	-	-	-	-	:	

Course Objectives:

Technicians working in industries or elsewhere essentially require the knowledge of environmental science so as to enable them to work and produce most efficient, economical and eco-friendly finished products.

- Solve various engineering problems applying ecosystem to produce eco – friendly products.
- Use relevant air and noise control method to solve domestic and industrial problems.
- Use relevant water and soil control method to solve domestic and industrial problems.
- To recognize relevant energy sources required for domestic and industrial applications.

Course Content:

Pre requisite: - High School Chemistry

ENVIRONMENTAL SCIENCE

UNIT-1 Environmental Studies :

Definition of Environment, Components of Environment, Biotic and Abiotic Components, Layers [06] of Atmosphere, Greenhouse Effect and Global Warming, Ozone Layer-Earth's Protective Umbrella, Depletion of Ozone Layer. Consequences of Ozone Depletion.

UNIT- 2 Water Pollution and Soil Pollution

Introduction, Sources of Water Pollution, Effects of Water Pollution, Control of Water [07]

Pollution, Oxygen Demanding Waste, Determination of Dissolved Oxygen, Turbidity, pH, Biological Oxygen Demand, Chemical Oxygen Demand. Soil Pollution: Introduction, Composition of the Soil, Types of Soil, Causes, Effects and control of Soil Pollution.

UNIT- 3 Air Pollution and Noise Pollution :

Introduction, Composition of Air, Causes and effects of Air Pollution, Primary and [07]

Secondary Pollutants, Control of Air Pollution, Acid Rain, Harmful effects of Acid Rain. Smog and its kind, Difference between Classical smog and Photochemical Smog. Causes and effects of Noise Pollution.

UNIT- 4 Radioactive Pollution :

[06]

Introduction, Kind of Radiation, Law of Radioactivity Decay, Mass Defect and Binding Energy, Nuclear Fission and Fusion, Harmful effects of Radiation.

UNIT-5 Renewable Sources of Energy :

[04]

Introduction of Solar Energy, Wind Energy, Tidal Energy, Biogas.

References:

(a) Suggested Learning Resources:

Books:

1. S.C. Sharma & M.P. Poonia, Environmental Studies, Khanna Publishing House, New Delhi
2. C.N. R. Rao, Understanding Chemistry, Universities Press (India) Pvt. Ltd., 2011.
3. Arceivala, Soli Asolekar, Shyam, Waste Water Treatment for Pollution Control and Reuse, Mc-Graw Hill Education India Pvt. Ltd., New York, 2007, ISBN:978-07-062099-
5. Nazaroff, William, Cohen, Lisa, Environmental Engineering Science, Willy, New York, 2000, ISBN 10: 0471144940.
6. O.P. Gupta, Elements of Environmental Pollution Control, Khanna Publishing House, New Delhi
7. Rao, C. S., Environmental Pollution Control and Engineering, New Age International Publication, 2007, ISBN: 81-224-1835-X.
8. Rao, M. N.Rao, H.V.N, Air Pollution, Tata Mc-Graw Hill Publication, New delhi, 1988, ISBN: 0-07- 451871-8.
9. Frank Kreith, Jan F Kreider, Principles of Solar Engineering, McGraw-Hill, New York ; 1978, ISBN: 9780070354760.
10. Aldo Vieira, Da Rosa, Fundamentals of renewable energy processes, Academic Press Oxford, UK; 2013. ISBN: 9780123978257.
11. Patvardhan, A.D, Industrial Solid Waste, Teri Press, New Delhi, 2013, ISBN:978-81-7993-502-6
12. Metcalf & Eddy, Waste Water Engineering, Mc-Graw Hill, New York, 2013, ISBN: 077441206.

Keshav Kant, Air Pollution & Control, Khanna Publishing House, New Delhi (Edition 2018)

(a) Open source software and website address :

- 1) www.eco-prayer.org
- 2) www.teriin.org
- 3) www.cpcp.nic.in
- 4) www.cpcp.gov.in
- 5) www.indiaenvironmentportal.org.in
- 6) www.whatis.techtarget.com
- 7) www.sustainabledevelopment.un.org
- 8) www.conserve-energy-future.com

Teachers should use the following strategies to achieve the various outcomes of the course.

- Different methods of teaching and media to be used to attain classroom attention.
- Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- 15-20% of the topics which are relatively simpler or descriptive in nature should be given to the students for self-learning and assess the development of competency through classroom presentations.

- Micro-projects may be given to group of students for hand-on experiences
- Encouraging students to visit to sites such as Railway station and research establishment around the institution.

Course outcomes

At the end of the course student will be able to

1. Understand the ecosystem and terminology and solve various engineering problems applying ecosystem knowledge to produce eco – friendly products.
2. Understand the suitable air, extent of noise pollution, and control measures and acts.
3. Understand the water and soil pollution, and control measures and acts.
4. Understand different renewable energy resources and efficient process of harvesting.

STATE BOARD OF TECHNICAL EDUCATION BIHAR

Scheme of Teaching and Examinations for

IIIrd SEMESTER DIPLOMA IN MECHANICAL ENGINEERING

(Effective from Session 2020-21Batch)

THEORY

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME		EXAMINATION- SCHEME						
			Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks A	Class Test (CT) Marks B	End Semester Exam (ESE) Marks C	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject	Credits
1.	Basic Mechanical Engineering	2025301	03	03	10	20	70	100	28	40	03
2.	Material Science & Engineering	2025302	04	03	10	20	70	100	28	40	03
3.	Fluid Mechanics & Hydraulic Machinery	2025303	04	03	10	20	70	100	28	40	03
4.	Manufacturing Engineering-I	2025304	04	03	10	20	70	100	28	40	03
5.	Thermal Engineering - I	2025305	04	03	10	20	70	100	28	40	03
			Total: -	19				350	500		15

PRACTICAL

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING	EXAMINATION-SCHEME					
			Periods per	Hours of Exam.	Practical		Total	Pass	Credits
					Internal(PA)	External (ESE))			
6.	Manufacturing Engineering Lab	2025306	02 50% Physical 50% Virtual	03	15	35	50	20	01
7.	Fluid Mechanics & Hydraulic Machinery Lab	2025307	02 50% Physical 50% Virtual	03	07	18	25	10	01
8.	Web Technology Lab	2018308	02 50% Physical 50% Virtual	03	07	18	25	10	01
9.	Thermal Engineering Lab-I	2025309	02 50% Physical 50% Virtual	03	07	18	25	10	01

TERM WORK

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME						
				Periods per Week	Marks of Internal Examiner (PA)	Marks of External (ESE)	Total Marks	Pass Marks in the Subject		
10.	Essence of Indian Knowledge and Tradition	2025310	4	15	35	50	20	02		
11.	Python	2018311	2	07	18	25	10	01		
12.	Summer Intern ship-I (4 weeks)	2025312	-	15	35	50	20	02		
Total: - 06						125		05		
Total Periods per week Each of duration One Hour				33	Total Marks = 750					

BASIC MECHANICAL ENGINEERING

Subject Code 2025301	Theory			Credits 03	
	No. of Periods Per Week				
	L	T	P/S		
	03	—	—		
	—	—	—		
	Full Marks	:	100		
	ESE	:	70		
	TA	:	10		
	CT	:	20		

Course objectives:

- To understand General Principles of Mechanical Engineering.
- To understand laws of thermodynamics, thermal and thermodynamic Processes.
- To understand working principles of power developing and power absorbing devices.
- To understand basic materials and manufacturing processes.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	1.1 Introduction to Thermodynamics - Role of Thermodynamics in Engineering and Science, Types of Systems, Thermodynamic Equilibrium, Properties, State, Process and Cycle, 1.2 Elementary introduction to Zeroth, First and Second laws of thermodynamics, Heat and Work Interactions for various non-flow and flow processes; 1.3 Concept of Heat Engine, Heat Pump & Refrigerator, Efficiency/ COP; Kelvin- Planck and Clausius Statements, Carnot Cycle, Carnot Efficiency, T-S and P-V Diagrams, Concept of Entropy (Definition and simple problems only).	12
Unit-II	2.1 Heat transfer & Thermal Power Plant - Modes of Heat Transfer; Conduction: Composite Walls and Cylinders, Combined Conduction and Convection: 2.2 Overall Heat Transfer Co- efficient, Simple Numerical Problems: Thermal Power Plant Layout; Rankine Cycle; 2.3 Fire Tube and Water Tube boilers, Babcock & Wilcox, Cochran Boilers; (Related simple problems only).	12
Unit-III	3.1 Steam Turbines - Impulse and Reaction Turbines; Condensers: Jet & Surface Condensers, Cooling Towers; 3.2 Internal Combustion Engines and Refrigeration: Otto, Diesel and Dual cycles; P-V and T-S Diagrams; IC Engines: 2 – Stroke and 4– Stroke I.C. Engines, S.I. and C.I. Engines	14
Unit-IV	4.1 Materials and Manufacturing Processes - Engineering Materials, Classification and their Properties; Metal Casting, Moulding, Patterns, 4.2 Metal Working: Hot Working and Cold Working, Metal Forming: Extrusion, Forging, Rolling, Drawing, 4.3 Gas Welding, Arc Welding, Soldering, and Brazing.	14
Unit-V	5.1 Machine Tools and Machining Processes - Machine Tools: Lathe Machine and types, Lathe Operations, 5.2 Milling Machine and types, Milling Operations, Shaper and Planer Machines: Differences, 5.3 Quick-Return Motion Mechanism, Drilling Machine: Operations, Grinding Machine: Operations	8

References:

1. Basic Mechanical Engineering – M.P. Poonia & S.C. Sharma, Khanna Publishing House, Delhi
2. Elements of Mechanical Engineering – M. L. Mathur, F. S. Mehta and R. P. Tiwari, Jain Brothers, New Delhi
3. Engineering Heat Transfer – Gupta & Prakash, Nem Chand & Brothers, New Delhi
4. Workshop Technology (Vol. 1 and 2) – B. S. Raghuvanshi, Dhanpath Rai and Sons, New Delhi.
5. Basic Mechanical Engineering – J Benjamin
6. Elements of Mechanical Engineering – Roy and Choudhary
7. Engineering Thermodynamics – Spalding and Cole
8. Basic Mechanical Engineering

Dinesh Agarwal,
Naweed

FPH

Course outcomes:

At the end of the course, the student will be able to:

CO1 Understand basics of thermodynamics and components of a thermal power plant

CO2 Understand basics of heat transfer, refrigeration and internal combustion engines

CO3 Understand mechanism of thermal power plant and boiler operation

CO4 Identify engineering materials, their properties, manufacturing methods encountered in engineering practice

CO5 Understand functions and operations of machine tools including milling, shaping, grinding and lathe machines

MATERIAL SCIENCE & ENGINEERING

Subject Code 2025302	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	04	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand crystal structures and atomic bonds.
- To understand the properties of different types of ferrous metals and alloys.
- To understand the properties of different types of non-ferrous metals and alloys.
- To understand various metallic failures and acquire the knowledge of testing of materials.
- To understand the concept of corrosion and its prevention.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	<p>1.1 Crystal structures and Bonds - Unit cell and space lattice: Crystal system: The seven basic crystal systems; Crystal structure for metallic elements: BCC, FCC and HCP; Coordination number for Simple Cubic, BCC and FCC; Atomic radius: definition, atomic radius for Simple Cubic, BCC and FCC; Atomic Packing Factor for Simple Cubic, BCC, FCC and HCP; Simple problems on finding number of atoms for a unit cell.</p> <p>1.2 Bonds in solids – Classification of primary or chemical bond, secondary or molecular bond; Types of primary bonds: Ionic, Covalent and Metallic Bonds; Types of secondary bonds: Dispersion bond, Dipole bond and Hydrogen bond.</p>	12
Unit-II	<p>2.1 Phase diagrams, Ferrous metals and its Alloys - Isomorphs, eutectic and eutectoid systems; Iron-Carbon binary diagram; Iron and Carbon Steels; flow sheet for production of iron and steel;</p> <p>2.2 Iron ores – Pig iron: classification, composition and effects of impurities on iron; Cast Iron: classification, composition, properties and uses; Wrought Iron: properties, uses/applications of wrought Iron; comparison of cast iron, wrought iron and mild steel and high carbon steel;</p> <p>2.3 standard commercial grades of steel as per BIS and AISI; Alloy Steels – purpose of alloying; effects of alloying elements – Important alloy steels: Silicon steel, High Speed Steel (HSS), heat resisting steel, spring steel, Stainless Steel (SS): types of SS, applications of SS – magnet steel –composition, properties and uses</p>	12
Unit-III	<p>3.1 Non-ferrous metals and its Alloys - Properties and uses of aluminium, copper, tin, lead, zinc, magnesium and nickel; Copper alloys: Brasses, bronzes – composition, properties and uses; Aluminium alloys: Duralumin, hindalium, magnalium -composition, properties and uses; Nickel alloys: Inconel, monel, nichrome – composition, properties and uses.</p> <p>3.2 Anti-friction/Bearing alloys: Various types of bearing bronzes - Standard commercial grades as per BIS/ASME.</p>	12

Unit-IV	<p>4.1 Failure analysis & Testing of Materials - Introduction to failure analysis; Fracture: ductile fracture, brittle fracture; cleavage; notch sensitivity; fatigue; endurance limit; characteristics of fatigue fracture; variables affecting fatigue life; creep; creep curve; creep fracture;</p> <p>4.2 Destructive testing: Tensile testing; compression testing; Hardness testing: Brinell, Rockwell; bend test; torsion test; fatigue test; creep test.</p> <p>4.3 Non-destructive testing: Visual Inspection; magnetic particle inspection; liquid penetrant test; ultrasonic inspection; radiography.</p>	12
Unit-V	<p>5.1 Corrosion & Surface Engineering - Nature of corrosion and its causes; Electrochemical reactions; Electrolytes; Factors affecting corrosion: Environment, Material properties and physical conditions; Types of corrosion; Corrosion control: Material selection, environment control and design;</p> <p>5.2 Surface engineering processes: Coatings and surface treatments; Cleaning and mechanical finishing of surfaces; Organic coatings; Electroplating and Special metallic plating; Electro polishing and photo-etching; Conversion coatings: Oxide, phosphate and chromate coatings; Thin film coatings: PVD and CVD;</p> <p>5.3 Surface analysis; Hard-facing, thermal spraying and high- energy processes; Process/material selection. Pollution norms for treating effluents as per standards.</p>	12

Reference Books:

1. **A Text Book of Material Science & Metallurgy – O.P. Khanna, Dhanpath Rai and Sons, New Delhi. 2003.**
2. **Material Science & Engineering – R.K. Rajput, S.K. Kataria & Sons, New Delhi, 2004.**
3. **Material Science – R.S. Khurmi, S. Chand & Co. Ltd., New Delhi, 2005.**
4. **Material Science and Engineering** **Arun Jain, K.P.Singh FPH**

Course outcomes

At the end of the course, the student will be able to:

- CO1 Explain about crystal structures and atomic bonds.**
- CO2 Describe about classification of ferrous metals and their properties.**
- CO3 Explain about non-ferrous metals, cutting tool materials and composites along with their properties.**
- CO4 Describe about the various metallic failures and knowledge in testing of materials.**
- CO5 Explain the principle of corrosion, their types and its prevention methods along with the various surface engineering processes.**

FLUID MECHANICS & HYDRAULIC MACHINERY

Subject Code 2025303	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	04	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand fluid flow & related machinery for power generation, water supply and irrigation.
- To Select and use appropriate flow measuring device.
- To Select and use appropriate pressure measuring device.
- To understand and analyze the performance of pumps and turbines.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	<p>1.1 Properties of fluid - Density, Specific gravity, Specific Weight, Specific Volume, Dynamic Viscosity, Kinematic Viscosity, Surface tension, Capillarity, Vapour Pressure, Compressibility.</p> <p>1.2 Fluid Pressure & Pressure Measurement - Fluid pressure, Pressure head, Pressure intensity, Concept of vacuum and gauge pressures, atmospheric pressure, absolute pressure, Simple and differential manometers, Bourdon pressure gauge,</p> <p>1.3 Concept of Total pressure on immersed bodies, center of pressure, Simple problems on Manometers.</p>	12
Unit-II	<p>2.1 Fluid Flow - Types of fluid flows, Path line and Stream line, Continuity equation, Bernoulli's theorem,</p> <p>2.2 Principle of operation of Venturimeter, Orifice meter and Pitot tube, Derivations for discharge, coefficient of discharge and numerical problems.</p> <p>2.3 Flow Through Pipes- Laminar and turbulent flows; Darcy's equation and Chazy's equation for frictional losses, Minor losses in pipes, Hydraulic gradient and total gradient line, Numerical problems to estimate major and minor losses</p>	14
Unit-III	<p>3.1 Impact of jets - Impact of jet on fixed vertical, moving vertical flat plates, Impact of jet on curved vanes with special reference to turbines & pumps, Simple Numerical on work done and efficiency.</p>	12
Unit-IV	<p>4.1 Hydraulic Turbines – Layout of hydroelectric power plant, Features of Hydroelectric power plant, Classification of hydraulic turbines, Selection of turbine on the basis of head and discharge available,</p> <p>4.2 Construction and working principle of Pelton wheel, Francis and Kaplan turbines, Draft tubes– types and construction, Concept of cavitation in turbines,</p> <p>4.3 Calculation of Work done, Power, efficiency of turbines, Unit quantities and simple numerical.</p>	10

Unit-V	<p>5.1 Centrifugal Pumps - Principle of working and applications, Types of casings and impellers, Concept of multistage, Priming and its methods, Cavitation, Manometric head, Work done, Manometric efficiency, Overall efficiency. Numerical on calculations of overall efficiency and power required to drive pumps.</p> <p>5.3 Reciprocating Pumps- Construction, working principle and applications of single and double acting reciprocating pumps, Concept of Slip, Negative slip, Cavitation and separation.</p>	12
--------	--	----

Reference Books:

1. Fluid Mechanics & Hydraulic Machines, S.S. Rattan, Khanna Publishing House, New Delhi
2. Hydraulic, fluid mechanics & fluid machines – Ramamrutham S, Dhanpath Rai and Sons, New Delhi.
3. Hydraulics and fluid mechanics including Hydraulic machines – Modi P.N. and Seth S.M., Standard Book House. New Delhi
4. One Thousand Solved Problems in Fluid Mechanics – K. Subramanya, Tata McGraw Hill.
5. Hydraulic, fluid mechanics & fluid machines – S. Ramamrutham, Dhanpat Rai and Sons, New Delhi
6. Fluid Mechanics and Hydraulic Machines – R. K. Bansal, Laxmi Publications, New Delhi
7. Fluid Mechanics and Hydraulic Machinery

Course outcomes:

At the end of the course, the student will be able to:

- i. Measure various properties such as pressure, velocity, flow rate using various instruments.
- ii. Calculate different parameters such as co-efficient of friction, power, efficiency etc. of various Systems.
- iii. Describe the construction and working of turbines and pumps.
- iv. Test the performance of turbines and pumps.
- v. Plot characteristics curves of turbines and pumps.

* * * * *

MANUFACTURING ENGINEERING – I

Subject Code 2025304	Theory			Credits 03	
	No. of Periods Per Week				
	L	T	P/S		
	04	—	—		
	—	—	—		

Course objectives:

- To understand the importance of cutting fluids & lubricants in machining.
- To study various types of basic production processes. To select, operate and control the appropriate processes for specific applications.
- To understand the concept of gear making and list various gear materials.
- To understand the importance of press tools and understand various die operations.
- To understand Grinding and finishing processes.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	<p>1.1 Cutting Fluids & Lubricants -Introduction; Types of cutting fluids, Fluids and coolants required in turning, drilling, shaping, sawing & broaching; Selection of cutting fluids, methods of application of cutting fluid; Classification of lubricants (solid, liquid, gaseous), Properties and applications of lubricants.</p> <p>1.2 Lathe Operations – Types of lathes – light duty, medium duty and heavy duty geared lathe, CNC lathe; Specifications; Basic parts and their functions; Operations and tools – Turning, parting off, Knurling, facing, Boring, drilling, threading, step turning, taper turning.</p>	12
Unit-II	<p>2.1 Broaching Machines - Introduction to broaching; Types of broaching machines – Horizontal type (Single ram & duplex ram), Vertical type, pull up, pull down, and push down; Elements of broach tool; broach teeth details; Nomenclature; Tool materials.</p> <p>2.2 Drilling – Classification; Basic parts and their functions; Radial drilling machine; Types of operations; Specifications of drilling machine; Types of drills and reamers.</p>	10
Unit-III	<p>3.1 Welding - Classification; Gas welding techniques; Types of welding flames; Arc Welding – Principle, Equipment, Applications; Shielded metal arc welding; Submerged arc welding; TIG / MIG welding; Resistance welding - Spot welding, Seam welding, Projection welding; Welding defects.</p> <p>Welding defects; Brazing and soldering: Types, Principles, Applications.</p> <p>3.2 Milling – Introduction; Types of milling machines: plain, Universal, vertical; constructional details, specifications; Milling operations: simple, compound and differential indexing; Milling cutters – types; Nomenclature of teeth; Teeth materials; Tool signature of milling cutter; Tool & work holding devices.</p>	10

Unit-IV	<p>4.1 Gear Making - Manufacture of gears – by Casting, Moulding, Stamping, Coining Extruding, Rolling, Machining; Gear generating methods: Gear Shaping with pinion cutter & rack cutter;</p> <p>4.2 Gear hobbing; Description of gear hob; Operation of gear hobbing machine; Gear finishing processes; Gear materials and specification; Heat treatment processes applied to gears.</p> <p>4.3 Press working – Types of presses and Specifications, Press working operations – Cutting, bending, drawing, punching, blanking, notching, lancing; Die set components- punch and die shoe, guide pin, bolster plate, stripper, stock guide, feed stock, pilot; Punch and die clearances for blanking and piercing, effect of clearance.</p>	12
Unit-V	<p>5.1 Grinding and finishing processes - Principles of metal removal by Grinding; Abrasives – Natural & Artificial; Bonds and binding processes: Vitrified, silicate, shellac, rubber, Bakelite.</p> <p>5.2 Factors affecting the selection of grinding wheels: size and shape of wheel, kind of abrasive, grain size, grade and strength of bond, structure of grain, spacing, kinds of binding material;</p> <p>5.3 Standard marking systems: Meaning of letters & numbers sequence of marking, Grades of letters;</p> <p>5.4 Grinding machines classification: Cylindrical, Surface, Tool & Cutter grinding machines; Construction details; Principle of centerless grinding; Advantages & limitations of center less grinding; Finishing by grinding: Honing, Lapping, Super finishing; Electroplating: Basic principles, Plating metals, applications;</p> <p>5.5 Hot dipping: Galvanizing, Tin coating, Parkerizing, Anodizing; Metal spraying: wire process, powder process and applications;</p> <p>5.6 Organic coatings: Oil base Paint, Lacquer base, Enamels, Bituminous paints, rubber base coating; finishing specifications.</p>	16

Reference Books:

1. **Manufacturing technology – P N Rao, Tata McGraw-Hill Publications**
2. **Elements of workshop Technology (Volume I & II) – S. K. Hajra Chaudary, Bose & Roy, Media Promoters and Publishers Limited.**
3. **Production Technology (Volume I & II) – O. P. Khanna & Lal, Dhanpat Rai Publications.**
4. **Fundamental of metal cutting and machine tools – B. L. Juneja, New age international limited.**
5. **Manufacturing Technology, Metal Cutting & Machine tools – P. N. Rao, Tata McGraw-Hill Publications**
6. **Production Technology – R.B. Gupta, Satya Prakashan, New Delhi**
7. **Production Processes** **Ram manohar Pandey FPH**
8. **Manufacturing Engineering -I** **Rajendra Duggar FPH**

Course outcomes:

At the end of the course, the student will be able to:

CO1 Know and identify basic manufacturing processes for manufacturing different components.

CO2 Operate & control different machines and equipment's.

CO3 Produce jobs as per specified dimensions and inspect the job for specified dimensions.

CO4 Select the specific manufacturing process for getting the desired type of output.

CO5 Adopt safety practices while working on various machines.

THERMAL ENGINEERING – I

Subject Code 2025305	Theory					Credits 03
	No. of Periods Per Week			Full Marks	:	
	L	T	P/S	ESE	:	
	04	—	—	TA	:	10
	—	—	—	CT	:	20

Course Learning Objectives:

- To give a good understanding of and thorough insight into all important aspects of thermal systems, energy control and the general issue of energy.
- To understand the principles & working of various power producing & power absorbing devices.
- To study, analyze and evaluate the operation and the performance of I.C. engines, compressors and refrigerators, to apply pinch technology and to critically analyze and describe the global behavior of integrated thermal systems.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	<p>1.1 Sources of Energy - Brief description of energy Sources: Classification of energy sources- Renewable, Non-Renewable; Fossil fuels, including CNG, LPG;</p> <p>1.2 Solar Energy: Flat plate and concentrating collectors & its applications (Solar Water Heater, Photovoltaic Cell, Solar Distillation);</p> <p>1.3 Wind Energy; Tidal Energy; Ocean Thermal Energy; Geothermal Energy; Biogas, Biomass, Biodiesel; Hydraulic Energy, Nuclear Energy; Fuel cell.</p>	08
Unit-II	<p>2.1 Internal Combustion Engines - Assumptions made in air standard cycle analysis; Brief description of Carnot, Otto and Diesel cycles with P-V and T-S diagrams; Internal and external combustion engines; advantages of I.C. engines over external combustion engines;</p> <p>2.2 Classification of I.C. engines; neat sketch of I.C. engine indicating component parts; Function of each part and materials used for the component parts - Cylinder, crank case, crank pin, crank, crank shaft, connecting rod, wrist pin, piston, cooling pins cylinder heads, exhaust valve, inlet valve;</p> <p>2.3 Working of four-stroke and two-stroke petrol and diesel engines; Comparison of two stroke and four stroke engines; Comparison of C.I. and S.I. engines; Valve timing and port timing diagrams for four stroke and two stroke engines. (Related simple problems only).</p>	12
Unit-III	<p>3.1 I.C. Engine Systems - Fuel system of Petrol engines; Principle of operation of simple and Zenith carburetors; Fuel system of Diesel engines; Types of injectors and fuel pumps;</p> <p>3.2 Cooling system-air-cooling, water-cooling system with thermosiphon method of circulation and water-cooling system with radiator and forced circulation (description with line diagram). Comparison of air cooling and water-cooling system;</p> <p>3.3 Ignition systems – Battery coil ignition and magneto ignition (description and working). Comparison of two systems;</p> <p>3.4 Types of lubricating systems used in I.C. engines with line diagram; Types of governing of I.C.</p>	12

	engines – hit and miss method, quantitative method, qualitative method and combination methods of governing; their applications; Objective of super charging. (Related simple problems only).	
Unit-IV	4.1 Performance of I.C. Engines - Brake power; Indicated power; Frictional power; Brake and Indicated mean effective pressures; Brake and Indicated thermal efficiencies; Mechanical efficiency; Relative efficiency; 4.2 Performance test; Morse test; Heat balance sheet; Methods of determination of B, P., I.P. and F.P.; Simple numerical problems on performance of I.C. engines.	14
Unit-V	5.1 Air Compressors - Functions of air compressor; Uses of compressed air; Types of air compressors; Single stage reciprocating air compressor - its construction and working (with line diagram) using P-V diagram; Multi stage compressors – Advantages over single stage compressors; Rotary compressors: Centrifugal compressor, axial flow type compressor and vane type compressors. 5.2 Refrigeration & Air- conditioning Refrigeration; Refrigerant; COP; Air Refrigeration system: components, working & applications; Vapour Compression system: components, working & applications; Air conditioning; Classification of Air- conditioning systems; Comfort and Industrial Air-Conditioning; Window Air-Conditioner; Summer Air-Conditioning system, Winter Air-Conditioning system, Year-round Air- Conditioning system. (Related simple problems only).	14

Reference Books:

1. **Introduction to Renewable Energy – Vaughn Nelson, CRC Press**
2. **Thermal Engineering – P.L. Ballaney, Khanna Publishers, 2002**
3. **A Course in Thermal Engineering – S. Domkundwar & C.P. Kothandaraman, Dhanpat Rai.**
4. **Thermal Engineering – R.S. Khurmi and J.K. Gupta, 18th Edition, S. Chand & Co, New Delhi.**
5. **Thermal Engineering – R. K. Rajput, 8th Edition, Laxmi publications Pvt Ltd, New Delhi.**
6. **Thermal Engieering** **Rajeev Singh** **FPH**
7. **Thermal Engieering -I** **Sanjay Malhotra** **FPH**

Course outcomes:

At the end of the course, the student will be able to:

- CO1** **Know various sources of Energy and their applications.**
- CO2** **Classify I.C. engines and understand their working and constructional features.**
- CO3** **Draw the energy flow diagram of an I.C. engine and evaluate its performance.**
- CO4** **Describe the constructional features of air compressor and working of different air compressors.**
- CO5** **Know the applications of refrigeration and Classify air-conditioning systems.**

MANUFACTURING ENGINEERING LAB

Subject Code 2025306	Practical						Credits 01
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal (PA)	:	15	
	—	—	02	External (ESE)	:	35	

Course Objectives:

- To Practice the casting principles and operations in foundry.
- To Practice the operation of Lathe.
- To Practice the joining of metals using different Welding techniques.

Course Content:

S.No.	Topics for practice
I	Moulding & casting of (i) Connecting rod (ii) Solid bearing (iii) V-Pulley/Gear Pulley
II	Arc welding (i) Lap Joint (ii) Butt Joint (iii) T-Joint
III	Gas welding (i) Lap Joint (ii) Butt Joint
IV	Spot welding (i) Lap Joint
V	Turning Exercise (i) Facing, Step Turning & Chamfering (ii) Step Turning & Taper Turning (iii) Step Turning & Groove Cutting (iv) Step Turning & Knurling (v) Step Turning & Thread Cutting (vi) Turning and Drilling
VI	Grinding the Lathe Cutting tools to the required angles
VII	Study of Lathe, drilling machine, shaping machine and slotting machine
VIII	The dismantling some of the components of lathe and then assemble the same
IX	List the faults associated with lathe and its remedies
X	The routine and preventive maintenance procedure for lathe

Reference Books:

1. Elements of Workshop Technology (Volume I & II) – Hajra Chowdry & Bhattacharaya, Media Promoters, 11th Edition, 2007
2. Introduction of Basic Manufacturing Processes and Workshop Technology – Rajender singh, new age International (P) Ltd. New Delhi, 2006
3. Workshop Technology – Raghuwanshi, Khanna Publishers. Jain & Gupta, New Delhi, 2002
4. Production Technology – Jain & Gupta, Khanna Publishers, New Delhi, 2006.
5. Production Technology – HMT, 18th edition, Tata McGraw Hill, New Delhi
6. Manufacturing process – Myro N Begman, 5 th edition, Tata McGraw Hill, New Delhi

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Prepare a mould sand mix and molten metal and calculate the amount of metal to be poured in the mould
- CO2 Centre the job and select the proper tool to perform the job on lathe machine. CO3 Calculate the taper angle and practice different taper turning methods on lathe.
- CO4 Prepare the edges for welding and select the suitable electrode, voltage and current.
- CO5 Operate the welding transformer and generator to perform various weld joint operations.

FLUID MECHANICS & HYDRAULIC MACHINERY LAB

Subject Code 2025307	Practical						Credits 01
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal (PA)	:	07	
	—	—	02	External (ESE)	:	18	

Course Objectives:

- To calibrate the given flow measuring device.
- To apply the knowledge acquired in theory subject.
- To analyze the performance of turbines and pumps.

Course Content:

S. No.	Topics for practice
I	Verification of Bernoulli's theorem.
II	Determination of Coefficient of Discharge of Venturi meter.
III	Determination of Coefficient of Discharge, coefficient of contraction and coefficient of velocity of Orifice meter.
IV	Determination of coefficient of friction of flow through pipes.
V	Determination of force exerted by the jet of water on the given vane.
VI	Determination of minor losses of flow through pipes.
VII	Calibration of pressure gauge using dead weight pressure gaugetester.
VIII	Trial on centrifugal pump to determine overall efficiency.
IX	Trial on reciprocating pump to determine overall efficiency.
X	Trial on Pelton wheel to determine overall efficiency.
XI	Trial on Francis/Kaplan turbine to determine overall efficiency.

Reference Books:

N. Kumara Swamy, Fluid Mechanics and Machinery Laboratory Manual, Charotar Publishing House Pvt. Ltd., ANAND 388 001, Ed. 2008

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Measure various properties such as pressure, velocity, flow rate using various instruments.
- CO2 Calculate different parameters such as co-efficient of friction, power, efficiency etc. of various systems.
- CO3 Understand the need and importance of calibration of pressure gauges.
- CO4 Describe the construction and working of turbines and pumps.
- CO5 Test the performance of turbines and pumps and Plot characteristics curves.

WEB TECHNOLOGY LAB

SUBJECT CODE: 2018308	Practical			Credits 01	
	No. of Periods per Week				
	L	T	P/S		
	-	02	Internal	:	07
			External	:	18

Course Learning Objectives:

This Lab course is intended to practice whatever is taught in theory class of ‘Web Technologies’. Some of the things that should necessary be covered in lab.

Course outcomes:

Student will be able to program web applications using and will be able to do the following:

- Use LAMP Stack for web applications
- Write simple applications with Technologies like HTML, Java script, AJAX, PHP
- Connect to Database and get results
- Parse XML files Student will be able to develop/build a functional website with full features.

Content: Practical		Hrs.	Marks
<u>Unit – 1</u>	Home page Development static pages (using Only HTML) of an online Book store.	04	
<u>Unit – 2</u>	Write a JavaScript to design a simple calculator to perform the following operations: sum, product, difference and quotient.	06	
<u>Unit – 3</u>	Write a PHP program to display a digital clock which displays the current time of the server.	06	
<u>Unit – 4</u>	Write an HTML code to display your CV on a web page.	04	
<u>Unit – 5</u>	Write an XML program to display products.	05	
<u>Unit – 6</u>	Create a web page with all types of Cascading style sheets.	06	
<u>Unit – 7</u>	Write a PHP program to display a digital clock which displays the current time of the server.	05	
<u>Unit – 8</u>	Write a JavaScript that calculates the squares and cubes of the numbers from 0 to 10 and outputs HTML text that displays the resulting values in an HTML table format.	04	

This is a skill course. More student practice and try to find solution on their own, better it will be.

Reference Books:

1. “Web Technologies--A Computer Science Perspective”, Jeffrey C.Jackson
2. “Internet & World Wide Web How to Program”, Deitel, Deitel, Goldberg, Pearson Education
3. “Web programming- Building Internet Application”, Chris Bales
4. Web Applications: Concepts and Real World Design, Knuckles

Thermal Engineering Lab – I

Subject Code 2025309	Practical						Credits 01
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal (PA)	:	07	
	—	—	02	External (ESE)	:	18	

Course Objectives:

- To understand the importance of fuel properties and learn the methods of determination of various properties of fuels.
- To understand the working principles of various methods used in determination of properties of fuels.
- To observe different parts of I.C. engine and understand their working.
- To identify the physical differences between S.I. and C.I. engines and 2-S and 4-S engines.

Course Content:

S.No. Topics for practice

I Flash & Fire point tests using Abel's/Cleveland/Pensky Martin

Apparatus

II Viscosity measurement using Say bolt viscometer

III Calorific value tests using Bomb Calorimeter (Solid and Liquid fuels) and Junkers Gas Calorimeter (Gaseous fuels)

IV Carbon residue test using Conradson's apparatus.

V Assembling and disassembling of I.C. Engines

VI Port timing diagram of Petrol engine

VII Port timing diagram of Diesel engine VIII Valve timing diagram of Petrol engine IX Valve timing diagram of Diesel engine

VIII Study of petrol and diesel engine components and Models Reference Books:

1. Thermal Engineering – P.L. Ballaney, Khanna Publishers, 2002

2. A Course in Thermal Engineering – S. Domkundwar & C.P. Kothandaraman, Dhanpat Rai & Publication New Delhi

3. Thermal Engineering – R.S. Khurmi and J.K. Gupta, 18th Edition, S. Chand & Co, New Delhi

Course outcomes:

At the end of the course, the student will be able to:

CO1 Understand the determination of flash and fire point of a given sample of fuel using given apparatus (Abels, Cleveland & Pensky martin)

CO2 Understand the determination of Viscosity of a given sample of oil using given apparatus.

CO3 Understand the determination of Calorific value of a given sample of fuel using given apparatus.

CO4 Understand the determination of amount of carbon residue of a given sample of petroleum product.

CO5 Draw VTD /PTD of given I.C. Engine and understand how the processes are controlled during its operation.

CO6 Understand the functions of various parts of IC engines and the working of IC engines.

TERM WORK

ESSENCE OF INDIAN KNOWLEDGE AND TRADITION

Subject Code 2025310	Practical			No. of Period in one session: 50			02
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal (PA)	:	15	
	—	—	04	External (ESE)	:	35	

Course Content:

Basic Structure of Indian Knowledge System:

- Basic Structure of Indian Knowledge System:

(i) वेद, (ii) उनवेद (आयुर्वेद, धनुवेद, गम्यवेद, स्थानत्य आदद) (iii) वेदांग (शिक्षा, कल्प, ननरुत, व्याकरण, ज्योनतष छांद), (iv) उनाइग (धर्म सिद्धि, रीरांसा, नुराण, तकमिस)

- Modern Science and Indian Knowledge System
- Yoga and Holistic Healthcare
- Case Studies.

SUGGESTED TEXT/REFERENCE BOOKS:

S. No.	Title of Book	Author	Publication
1.	Cultural Heritage of In- dia-Course Material	V. Sivaramakrishna	Bharatiya Vidya Bhavan, Mumbai, 5th Edition, 2014
2.	Modern Physics and Vedant	Swami Jitatmanand	Bhartiya Vidya Bhavan
3.	The wave of Life	Fritzof Capra	
4.	Tao of Physics	Fritzof Capra	
5.	Tarkasangraha of Annam Bhatta, International	V N Jha	Chinmay Foundation, Velliarnad, Amaku,am
6.	Science of Consciousness Psychotherapy and Yoga Practices	RN Jha	Vidyanidhi Prakasham Delhi, 2016

PYTHON (Term Work)

Subject Code 2018311	Term Work			Credits 01	
	No. of Periods Per Week				
	L	T	P/TW		
	—	—	02	Internal (PA)	
	—	—	—	External (ESE)	

CONTENTS: Practical			Hrs.	Marks
UNIT – 01	Write a program to demonstrate basic data type in python.			
UNIT – 02	Write a program to compute distance between two points taking input from the user (Pythagorean Theorem)			
UNIT – 03	Write a python program Using for loop, write a program that prints out the decimal equivalent of $1+\frac{1}{2}+1\frac{1}{3}+\dots+1\frac{1}{n}$			
UNIT – 04	Write a Python program to find first n prime numbers. Write a program to demonstrate list and tuple in python.			
UNIT – 05	Write a program using a for loop that loops over a sequence. Write a program using a while loop that asks the user for a number and prints a countdown from that number to zero.			
UNIT – 06	Write a Python Program to add matrices. Write a Python program to multiply matrices.			
UNIT – 07	Write a Python program to check if a string is palindrome or not.			
UNIT – 08	Write a Python program to Extract Unique values dictionary values			
UNIT – 09	Write a Python program to read file word by word Write a Python program to Get number of characters, words.			
UNIT – 10	Write a Python program for Linear Search			

References Books:

1. Taming Python by Programming, Jeeva Jose, Khanna Publishing House
2. Starting Out with Python, Tony Gaddis, Pearson
3. Core Python Programming, Wesley J. Chun, Prentice Hall
4. Python Programming: Using Problem Solving Approach, Reema Thareja, Oxford University
5. Introduction to Computation and Programming Using Python. John V. Guttag, MIT Press.

TERM WORK
Summer Internship-I (4 weeks)

Subject Code 2025312	Theory No. of Periods per Week <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33.33%; padding: 2px;">L</td><td style="width: 33.33%; padding: 2px;">T</td><td style="width: 33.33%; padding: 2px;">P/S</td></tr> <tr> <td style="padding: 2px;">-</td><td style="padding: 2px;">—</td><td style="padding: 2px;">-</td></tr> <tr> <td style="padding: 2px;">—</td><td style="padding: 2px;">—</td><td style="padding: 2px;">—</td></tr> </table>			L	T	P/S	-	—	-	—	—	—	Full Marks : 50 Internal(PA) : 15 External(ESE) : 35	Credits 02
L	T	P/S												
-	—	-												
—	—	—												

- How important is it really to do an internship before applying for a job?
- Do you need to get the hands-on experience that is talked about when discussing the importance of internships or is it a matter of just landing the right job?

During the Course duration year, students may feel overwhelmed with coursework, sports, or co-curricular activities that may keep them extremely busy while leaving no time to think of doing an internship or a job. Many students may also feel that they are caught in a bind since they need to make money to pay for their expenses but they can only find unpaid internships in their field.

Getting Your Feet Wet

Internships are a proven way to gain relevant knowledge, skills, and experience while establishing important connections in the field. Internships are also a way to get your feet wet and find out if a specific field is something you could see yourself doing full-time.

Internships may be completed during fall or spring semester or full time over the course of the summer. Unpaid internships may be easier to get but may also pose problems if making money is necessary, especially during the summer. There are many who cannot afford to work for no pay, so they are forced into doing menial jobs such as wait staff or bartending to work their way through college. It may preclude some from doing an internship which may be a detriment when hoping to get a full-time job.

Financial Considerations

Financial considerations when looking for an internship can make a big difference in the decision-making process. Sometimes, students will take a part-time or full-time job to supplement the time that they are spending at their internship. Whether an internship is paid or unpaid, there are many things that need to be taken into consideration to decide if an internship is worthwhile. It's important to decide if an internship will ultimately be in the best interest of the student to help meet the requirements needed when applying for a full-time job.

How to Get Funding for an Internship

Some colleges also offer funded internships for students. Check with your college to see if they offer a funded internship program that may help to meet the requirements of your college curriculum while offering experiences that employers seek when hiring new college graduates for entry-level jobs. Many foundations and organizations offer financing to college students so they may try writing to a number of them to see if they provide funding for college students seeking to do internships in their field.

Having an Internship and a Job

Students may elect to do a summer internship a couple of days per week while working a part-time job for the remainder of the time. For those who need to maximize the amount of money they make over the course of the summer, they may look into doing an internship during the academic year when they are less likely to expect to make money to help defray their college expenses.

In addition to internships, volunteer opportunities can also be an excellent way to gain experience and exposure to the workforce. Employers love to see volunteer experiences on a student's resume.

Volunteering shows commitment to causes and certain values that are intrinsic to the individuals who have participated in these types of experiences. Employers look for employees who are publicly engaged and who take an interest in community service and in doing good work.

What Employers Want

Internships and volunteer experiences make candidates more competitive in the job market. In addition to gaining exposure and experience in the field, they also provide an opportunity to see if the particular career field is the right one based on getting personal experience in the field. No matter what opportunities you engage in, it's important to maintain professionalism and take on the individual responsibility that is required.

The Benefits of Completing an internship

By doing a great job and completing more than what is required of you in your internship, you will be creating a great impression that can provide a great reference letter at the least, and may even potentially lead to a potential job offer. When you leave the organization at the end of the internship, you should ask for a recommendation letter that you can keep on file for future reference.

Internships Are a Learning Experience

Internships are a great way to learn the ropes so even if you find yourself filing or making coffee, as long as you're learning about the field take advantage of the opportunity and don't take the experience lightly. Asking questions is one key to learning in an internship and keeping yourself flexible throughout the internship can open many doors.

STATE BOARD OF TECHNICAL EDUCATION BIHAR

Scheme of Teaching and Examinations for

IVth SEMESTER DIPLOMA IN MECHANICAL ENGINEERING

(Effective from Session 2020-21 Batch) (Rev 1.0)

THEORY

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING	EXAMINATION-SCHEME							
				Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks A	Class Test (CT) Marks B	End Semester Exam (ESE) Marks C	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject
1.	Measurements & Metrology	2025401	03	03	10	20	70	100	28	40	03
2.	Strength of Materials	2025402	03	03	10	20	70	100	28	40	03
3.	Thermal Engineering- II	2025403	03	03	10	20	70	100	28	40	03
4.	Theory of Machines & Mechanisms	2025404	03	03	10	20	70	100	28	40	03
5.	Tool Engineering	2025405	03	03	10	20	70	100	28	40	03
		Total: - 15						350	500		15

PRACTICAL

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME						
				Periods per Week	Hours of Exam.	Practical (ESE)		Total Marks (PA+ESE)	Pass Marks in the Subject	Credits
6.	Measurements & Metrology Lab	2025406	02 50% Physical 50% Virtual	03	15	35		50	20	01
7.	Material Testing Lab	2025407	04 50% Physical 50% Virtual	03	15	35		50	20	02
8.	Thermal Engineering Lab-II	2025408	04 50% Physical 50% Virtual	03	15	35		50	20	02
Total: - 10								150		05

TERM WORK

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME					
				Periods per Week	Marks of Internal Examiner (PA)	Marks of External (ESE)	Total Marks (PA+ESE)	Pass Marks in the Subject	Credits
9.	Minor Project	2025409	04	15	35	50	20	02	
10.	Course Under Moocs/Swayam /Others	2025410	04	15	35	50	20	02	
Total: - 08								100	24
Total Periods per week Each of duration One Hour 33					Total Marks = 750				

MEASUREMENTS & METROLOGY

SubjectCode 2025401	Theory						Credits 03
	No. of Periods Per Week			FullMarks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

1. To study advances in technology, measurement techniques, types of instrumentation devices, innovations, refinements.
2. To study the principles of instrumentation, transducers & measurement of non-electrical parameters like temperature, pressure, flow, speed, force and stress.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	1.1 Introduction: Definition of measurement; Significance of measurement. Methods of measurements: Direct & Indirect; Generalized measuring system; Standards of measurements: Primary & Secondary; Factors influencing selection of measuring instruments; Terms applicable to measuring instruments: Precision and Accuracy, Sensitivity and Repeatability, Range, Threshold, Hysteresis, calibration; Errors in Measurements: Classification of errors, Systematic and Random error. 1.2 Measuring instruments: Introduction; Thread measurements: Thread gauge micrometre; Angle measurements: Bevel protractor, Sine Bar; Gauges: plain plug gauge, ring Gauge, snap gauge, limit gauge; Comparators: Characteristics of comparators, Types of comparators. 1.2 Surface finish: Definition, Terminology of surface finish, Talysurf surface roughness tester; Co-ordinating measuring machine.	10
Unit-II	2.1 Transducers and Strain gauges: Introduction of Transducers, Characteristics, classification of transducers, two coil self-inductance transducer, Piezoelectric transducer, Strain gauges & Measurements: Strain gauge, Classification, mounting of strain gauges, Strain gauge rosettes-two and three elements. 2.2 Measurement of force, torque, and pressure: Introduction to Force measurement: Spring Balance, Proving ring, Load cell; Torque measurement: Prony brake, Eddy current, Hydraulic dynamometer; Pressure measurement: Mcloed gauge.	10
Unit-III	3.1 Applied mechanical measurements: Speed measurement: Classification of tachometers, Revolution counters, Eddy current tachometers; Displacement measurement: Linear variable Differential transformers (LVDT); Flow measurement: Rotameters, Turbine meter; Temperature measurement: Resistance thermometers, Optical Pyrometer. 3.2 Miscellaneous measurements: Humidity measurement: hair hygrometer; Density measurement: hydrometer; Liquid level measurement: sight glass, Float gauge; Biomedical measurement: Sphygmo monometer.	10
Unit-IV	4.1 Limits, Fits & Tolerances: Concept of Limits, Fits, and Tolerances; Selective Assembly; Interchangeability; Hole and Shaft Basis System; Taylor's Principle; Design of Plug; Ring Gauges; IS 919- 1993 (Limits, Fits & Tolerances, Gauges} IS 3477-1973; concept of multi gauging and inspection. 4.2 Angular Measurement: Concept; Instruments for Angular Measurements; Working and Use of Universal Bevel Protractor, Sine Bar, Spirit Level; Principle of Working of Clinometers; Angle Gauges (With Numerical on Setting of Angle Gauges). 4.3 Screw thread Measurements: ISO grade and fits of thread; Errors in threads; Pitch errors; Measurement of different elements such as major diameter, minor diameter, effective	10

	diameter, pitch; Two wire method; Thread gauge micrometer; Working principle of floating carriage dial micrometer.	
Unit- V	<p>5.1 Gear Measurement and Testing: Analytical and functional inspection; Rolling test Measurement of tooth thickness (constant chord method); Gear tooth Vernier; Errors in gears such as backlash, runout, composite.</p> <p>5.2 Machine tool testing: Parallelism; Straightness; Squareness; Coaxially; roundness; run out; alignment testing of machine tools as per IS standard procedure.</p>	10

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Define accuracy, precision, calibration, sensitivity, repeatability and such relevant terms in metrology.
- CO2 Distinguish between various types of errors.
- CO3 Explain the principle of operation of an instrument and select suitable measuring device for a particular application.
- CO4 Interpret the concept of calibration of an instrument.
- CO5 Analyze and interpret the data obtained from the different measurements processes and present it in the graphical form, statistical form.

CO PO Mapping:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C401.1	1. Define accuracy, precision, calibration, sensitivity, repeatability and such relevant terms in metrology	3	3	2	-	-	3	2	-	-
C401.2	2. Distinguish between various types of errors.	3	3	3	2	3	3	3	-	-
C401.3	3. Explain the principle of operation of an instrument and select suitable measuring device for a particular application.	2	3	3	2	3	3	3	-	-
C401.4	4. Interpret the concept of calibration of an instrument	3	3	3	3	3	3	3	-	-
C401.5	5. Analyze and interpret the data obtained from the different measurements processes and present it in the graphical form, statistical form.	3	3	2	3	3	3	3	-	-
C401 (Average)		2.8	3	2.6	2	2.4	3	2.8	-	-

References:

1. Mechanical measurements – Beckwith Marangoni and Lienhard, Pearson Education, 6th Ed.,2006.
2. Metrology & Measurement – Annand K Bewoor, Vinay kulakarni, Tata McGraw Hill, New Delhi,2009
3. Principles of Industrial instrumentation and control systems – Channakesava. R. Alavala, DELMAR cenage learning,2009.
4. Principles of Engineering Metrology – Rega Rupendra, Jaico publishers,2008
5. Dimensional Metrology – Connie Dotson, DELMAR, Cenage learning,2007
6. Instrumentation measurement and analysis – B.C. Nakara, K.K. Chaudary, second edition, Tata cgraw Hill, 2005.
7. Engineering Metrology – R.K. Jain, Khanna Publishers, New Delhi,2005.
8. A text book of Engineering Metrology – I.C. Gupta, Dhanpat Rai and Sons, New Delhi,2005
9. Metrology for Engineers – J.F.W. Galyer and C. R. Shotbolt,ELBS
- 10 Engineering Metrology – K. J. Hume, Kalyanipublishers
- 11 Measurement & Metrology - Rohit Bajaj, FPH
- 12 Measurement & Metrology - Ram Manohar Pandey, FPH

STRENGTH OF MATERIALS

SubjectCode 2025402	Theory			FullMarks : 100 ESE : 70 TA : 10 CT : 20	Credits 03		
	No. of Periods Per Week						
	L	T	P/S				
	03	—	—				
	—	—	—				

Course objectives:

- To understand the concept of Simple Stresses and Strains.
- To understand the concept of Strain Energy.
- To understand the concept of Shear Force and Bending Moment Diagrams.
- To understand the concept of Theory of Simple Bending and Deflection of Beams.
- To understand the concept of Torsion in Shafts and Springs.
- To understand the concept of Thin Cylindrical Shells.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit- I	<p>1.1 Simple Stresses and Strains: Types of forces; Stress, Strain and their nature; Mechanical properties of common engineering materials; Significance of various points on stress – strain diagram for M.S. and C.I specimens; Significance of factor of safety; Relation between elastic constants; Stress and strain values in bodies of uniform section and of composite section under the influence of normal forces; Thermal stresses in bodies of uniform section and composite sections; Principal Plane, Stress & Mohr's Circle</p> <p>Related numerical problems on the above topics.</p> <p>1.2 Strain Energy: Strain energy or resilience, proof resilience and modulus of resilience</p> <p>Derivation of strain energy for the following cases: i) Gradually applied load, ii) Suddenly applied load, iii) Impact/ shock load; Related numerical problems.</p>	12
Unit- II	<p>2.1 Shear Force & Bending Moment Diagrams: Types of beams with examples: a) Cantilever beam, b) Simply supported beam, c) Over hanging beam, d) Continuous beam, e) Fixed beam; Types of Loads – Point load, UDL and UVL; Definition and explanation of shear force and bending moment;</p> <p>2.2 Calculation of shear force and bending moment and drawing the S.F and B.M. diagrams by the analytical method only for the following cases: a) Cantilever with point loads, b) Cantilever with uniformly distributed load, c) Simply supported beam with point loads, d) Simply supported beam with UDL, e) Over hanging beam with point loads, at the centre and at free ends, f) Over hanging beam with UDL throughout, g) Combination of point and UDL for the above; Related numerical problems.</p>	12
Unit-III	<p>3.1 Theory of Simple Bending and Deflection of Beams: Explanation of terms: Neutral layer, Neutral Axis, Modulus of Section, Moment of Resistance, Bending stress, Radius of curvature; Assumptions in theory of simple bending; Bending Equation $M/I = \sigma / y = E / R$ with derivation; calculations of bending stress, modulus of section and moment of resistance; Calculation of safe loads and safe span and dimensions of cross- section; Definition and explanation of deflection as applied to beams; Deflection formulae without proof for cantilever and simply supported beams with point load and UDL only (Standard cases only); Related numerical problems.</p>	12

Unit- IV	<p>4.1 Torsion in Shafts and Springs: Definition and function of shaft; Calculation of polar M.I. for solid and hollow shafts; Assumptions in simple torsion; Derivation of the equation $T / J = G * \theta / L = \tau / r$; Problems on design of shaft based on strength and rigidity; Numerical Problems related to comparison of strength and weight of solid and hollow shafts; Classification of springs; Nomenclature of closed coil helical spring; Deflection formula for closed coil helical spring (without derivation); stiffness of spring; Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils.</p>	12
Unit- V	<p>5.1 Thin Cylindrical Shells: Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure of shell; Derivation of expressions for the longitudinal and hoop stress for seamless and seam shells; Related numerical Problems for safe thickness and safe working pressure (Related simple problems only)</p>	12

Course outcomes

At the end of the course, the student will be able to:

- CO1 Compute stress and strain values and find the changes in axial, lateral and volumetric dimensions of bodies of uniform section and of composite section under the influence of normal forces.
- CO2 Calculate thermal stresses, in bodies of uniform section and composite sections.
- CO3 Define resilience, proof – resilience and modulus of resilience and obtain expressions for instantaneous stress developed in bodies subjected to different loads.
- CO4 Identify shear force and bending moment at any section of beam and draw the S.F. & B.M. diagrams of for UDL and Point loads.
- CO5 Evaluate the safe load, safe span and dimensions of cross section.
- CO6 Analyze strength and weight of solid and hollow shafts of the same length and material and compute the stress and deflection of the closed coil helical spring.

CO PO Mapping:

Course code. CO number	CO Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PSO 1	PSO 2
C402.1	Compute stress and strain values and find the changes in axial, lateral and volumetric dimensions of bodies of uniform section and of composite section under the influence of normal forces	2	2	1	1	1	-	1	1	1
C402.2	Calculate thermal stresses, in bodies of uniform section and composite sections.	1	2	2	1	1	-	1	1	1
C402.3	Define resilience, proof – resilience and modulus of resilience and obtain expressions for instantaneous stress developed in bodies subjected to different loads	1	3	2	1	1	1	1	2	2
C402.4	Identify shear force and bending moment at any section of beam and draw the S.F. & B.M. diagrams for UDL and Point loads.	3	1	1	1	1	-	1	2	2
C402.5	Evaluate the safe load, safe span and dimensions of cross section.	2	3	2	2	1	-	1	3	3
C402.6	Analyze strength and weight of solid and hollow shafts of the same length and material and compute the stress and deflection of the closed coil helical spring.	2	2	1	2	2	1	2	2	1

C402 (Average)	11	13	09	08	07	02	07	11	10

Reference Books:

1. **Strength of Materials – D.S. Bedi, Khanna Book Publishing Co. (P) Ltd., Delhi, 2017**
2. **Strength of Materials – B.C. Punmia, A K Jain Laxmi Publications, New Delhi, 2013**
3. **Strength of Materials – S. Ramamrutham, Dhanpat Rai & Publication New Delhi**
4. **Strength of Materials – R.S. Khurmi, S. Chand Company Ltd. Delhi**
5. **A Text Book strength of Material – R.K. Bansal, Laxmi Publication New Delhi.**
6. **Strength of Materials - Ravi Agarwal, FPH**
7. **Mechanics of Materials - Roshan Sinha, FPH**

THERMAL ENGINEERING - II

Subject Code 2025403	Theory			Credits 03	
	No. of Periods Per Week				
	L	T	P/S		
	03	—	—		
	—	—	—		

Course objectives:

- To understand the working and applications of Gas turbines & Jet Propulsion.
- To understand the methods of computing various properties of steam.
- To understand the working of various Steam Boilers, functions of various accessories and mountings of boilers.
- To understand the Working of Steam Nozzles and Steam turbines.
- To understand the necessity of compounding and governing of a turbine.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	<p>1.1 Gas Turbines: Air-standard Brayton cycle; Description with p-v and T-S diagrams; Gas turbines Classification: open cycle gas turbines and closed cycle gas turbines; comparison of gas turbine with reciprocating I.C. engines and steam turbines. Applications and limitations of gas turbines; General lay-out of Open cycle constant pressure gas turbine; PV and T-S diagrams and working; General lay-out of Closed cycle gas turbine; P-V and T-S diagrams and working.</p> <p>1.2 Jet Propulsion: Principle of jet propulsion; Fuels used for jet propulsion; Applications of jet propulsion; Working of a turbojet engine; Principle of Ram effect; Working of a Ram jet engine; Principle of Rocket propulsion; Working principle of a rocket engine; Applications of rocket propulsion; Comparison of jet and rocket propulsions. (Related simple problems only)</p>	12

Unit-II	<p>2.1 Properties of Steam: Formation of steam under constant pressure; Industrial uses of steam; Basic definitions: saturated liquid line, saturated vapour line, liquid region, vapour region, wet region, superheat region, critical point, saturated liquid, saturated vapour, saturation temperature, sensible heat, latent heat, wet steam, dryness fraction, wetness fraction, saturated steam, superheated steam, degree of superheat.</p> <p>2.2 Determination of enthalpy, internal energy, internal latent heat, entropy of wet, dry and superheated steam at a given pressure using steam tables and Mollier chart for the following processes: Isochoric process, Isobaric process, Hyperbolic process, Isothermal process, Isentropic process, throttling process, Polytropic process; Simple direct problems on the above using tables and charts;</p> <p>2.3 Steam calorimeters: Separating, throttling, Combined Separating and throttling calorimeters (Related simple problems only)</p>	14
Unit-III	<p>3.1 Steam Generators: Function and use of steam boilers; Classification of steam boilers with examples; Brief explanation with line sketches of Cochran, Babcock and Wilcox Boilers; Comparison of water tube and fire tube boilers; Description with line sketches and working of modern high pressure boilers Lamont and Benson boilers;</p> <p>3.2 Boiler mountings: Pressure gauge, water level indicator, fusible plug, blow down cock, stop valve, safety valve, (dead weight type, spring loaded type, high pressure and low water safety alarm); Boiler accessories: feed pump, economiser, super heater and air pre-heater; Study of steam traps & separators;</p> <p>3.3 Explanation of the terms: Actual evaporation, equivalent evaporation, factor of evaporation, boiler horse power and boiler efficiency; Formula for the above terms without proof; Simple direct problems on the above; Draught systems (Natural, forced & induced). T-S & P-V Diagram of Rankine Cycle (Related simple problems only)</p>	12
Unit-IV	<p>4.1 Steam Nozzles: Flow of steam through nozzle; Velocity of steam at the exit of nozzle in terms of heat drop using analytical method and Mollier chart; Discharge of steam through nozzles; Critical pressure ratio; Methods of calculation of cross-sectional areas at throat and exit for maximum discharge; Effect of friction in nozzles and Super saturated flow in nozzles; Working steam jet injector; Simple numerical problems.</p>	10
Unit-V	<p>5.1 Steam Turbines: Classification of steam turbines with examples; Difference between impulse & reaction turbines; Principle of working of a simple Delavel turbine with line diagrams- Velocity diagrams; Expression for work done, axial thrust, tangential thrust, blade and diagram efficiency, stage efficiency, nozzle efficiency; Methods of reducing rotor speed; compounding for velocity, for pressure or both pressure and velocity; Working principle with line diagram of a Parson's Reaction turbine-velocity diagrams; Simple problems on single stage impulse turbines (without blade friction) and reaction turbine including data on blade height. Bleeding, re-heating and re-heating factors (Problems omitted);</p> <p>5.2 Governing of steam turbines: Throttle, By Nozzle control governing. (Related simple problems only)</p>	12

Course outcomes

At the end of the course, the student will be able to:

- CO1 Explain the working cycle of gas turbines, and the working of Jet and Rocket Engines.
- CO2 Compute the work done, enthalpy, internal energy and entropy of steam at given conditions for a given process using steam tables and Mollier chart.
- CO3 Distinguish between water tube and firetube boilers and explain the function all the mountings

and accessories.

- CO4 Calculate Velocity of steam at the exit of nozzle in terms of heat drop analytically and by using Mollier chart.
- CO5 Explain the principle of working of a steam turbine and distinguish between the impulse turbines and reaction turbines..
- CO6 State the necessity of governing and compounding of a turbine.

CO PO Mapping:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C403.1	Explain the working cycle of gas turbines, and the working of Jet and Rocket Engines	3	1	-	-	-	1	1	2	1
C403.2	Compute the work done, enthalpy, internal energy and entropy of steam at given conditions for a given process using steam tables and Mollier chart.	2	3	1	-	-	1	1	3	2
C403.3	Distinguish between water tube and firetube boilers and explain the function all the mountings and accessories.	3	-	-	-		1	1	2	1
C403.4	Calculate Velocity of steam at the exit of nozzle in terms of heat drop analytically and by using Mollier chart.	2	3	1	-	-	1	1	3	2
C403.5	Explain the principle of working of a steam turbine and distinguish between the impulse turbines and reaction turbines.	3	-	-	-	-	1	1	2	-
C403.6	State the necessity of governing and compounding of a turbine.	3	-	-	1	-	1	1	2	-
C403 (Average)		2.7	2.3	1	1	-	1	1	2.3	1.5

Reference Books:

1. **A Course in Thermal Engineering – S. Domkundwar& C.P. Kothandaraman, Dhanpat Rai & Publication, New Delhi**
2. **Thermal Engineering – R.K. Rajput, Laxmi Publication New Delhi**
3. **Thermal Engineering – P.L. Ballaney, Khanna Publishers, 2002**
4. **Treatise on Heat Engineering in MKS and SI Units – V.P. Vasandani& D.S. Kumar, Metropolitan Book Co. Pvt. Ltd, New Delhi.**
5. **Thermal Engineering II -TarunMaskara , FPH**

THEORY OF MACHINE & MECHANISMS

Subject Code 2025404	Theory			Full Marks			Credits 03
	No. of Periods Per Week			:		100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand different types of cams and their motions and also to draw cam profiles for various motions.
- To understand the mechanism of various types of drives available for transmission of power.
- To understand the design of Brakes, Dynamometers, Bearings and Clutches and their function and working.
- To understand the need for balancing of masses in the same plane
- To know different types of governors.

CONTENTS: THEORY

Unit	Name of Topic	Hrs
Unit-I	Cams and Followers: 1.1 Basics Concept of link, Pair linkage & Classification of Pairs, Definition and application of Cams and Followers; Classification of Cams and Followers; Different follower motions and their displacement diagrams like uniform velocity, SHM, uniform acceleration and Retardation; 1.2 Drawing of profile of radial cam with knife-edge and roller follower with and without Offset with reciprocating motion (graphical method).	4
Unit-II	Power Transmission: 2.1 Types of Drives – Belt, Chain, Rope, Gear drives & their comparison; Belt Drives - flat belt, V-belt & its applications; Material for flat and V-belt; Angle of lap, Belt length. Slip and Creep; Determination of Velocity Ratio, Ratio of tight side and slack side tension; Centrifugal tension and Initial tension; Condition for maximum power transmission (Simple numericals); 2.2 Chain Drives – Advantages & Disadvantages; Selection of Chain & Sprocket wheels; Methods of lubrication; Rope Drives – Types, applications, advantages & limitations of Steel ropes. 2.3 Gear Drives – Spur gear terminology; Types of gears and gear trains, their selection for different applications; Train value & Velocity ratio for compound, reverted and simple epicyclic gear train; Methods of lubrication; Law of gearing;	14

Unit-III	3.1 Flywheel and Governors: Flywheel -Concept, function and application of flywheel with the help of turning moment diagram for single cylinder 4-Stroke I.C. Engine (no Numericals); Co-efficient of fluctuation of energy, Coefficient of fluctuation of speed and its significance; Governors: Types and explanation with neat sketches (Centrifugal,Watt and Porter); Concept, function and applications&Terminology of Governors; Comparison between Flywheel and Governor.	14
-----------------	--	-----------

Unit-IV	<p>Brakes, Dynamometers, Clutches &Bearings:</p> <p>4.1 Function of brakes and dynamometers; Types of brakes and Dynamometers; Comparison between brakes and dynamometers; Construction and working of shoe brake, ii) Band Brake, iii) Internal expanding shoe brake iv) Disc Brake; v) Concept of Self Locking & Self energizing brakes; Numerical problems to find braking force and braking torque for shoe & band brakes;</p> <p>4.2 Construction and working of Rope Brake Dynamometer, Hydraulic Dynamometer, Eddy current Dynamometers;</p> <p>4.3 Clutches- Uniform pressure and Uniform Wear theories; Function of Clutch and its application; Construction and working of Single plate clutch, ii) Multiplate clutch, iii) Centrifugal Clutch iv) Cone clutch and v) Diaphragm clutch. (Simple numerical on Single and Multiplate clutch); Bearings Simple Pivot, Collar Bearing iii) Conical pivot. Torque & power lost in friction (no derivation). Simple numerical.</p>	08
Unit-V	<p>Balancing & Vibrations:</p> <p>5.1 Concept of balancing; Balancing of single rotating mass; Graphical method for balancing of several masses revolving in same plane;</p> <p>5.2 Concept and terminology used in vibrations Causes of vibrations in machines; their harmful effects and remedies.</p>	08

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Develop cam profiles based on different follower motions required for engineering applications.
- CO2 Select Suitable Drives for different industrial applications.
- CO3 Calculate critical parameters related to effective functioning of flywheel and governors.
- CO4 Calculate torque and power loss in various brakes, dynamometers, clutches and bearings in various engineering applications.
- CO5 Balance various rotor systems to avoid vibrations in different devices.

CO PO Mapping:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C404.1	Develop cam profiles based on different follower motions required for engineering applications	3	1	3	-	1	-	1	-	-
C404.2	Select Suitable Drives for different industrial applications.	3	2	-	-	-	-	1	-	-
C404.3	Calculate critical parameters related to effective functioning of flywheel and governors	3	2	-	-	1	-	1	-	-
C404.4	Calculate torque and power loss in various brakes, dynamometers, clutches and bearings in various engineering applications.	3	3	-	-	-	-	1	-	-
C404.5	Balance various rotor systems to avoid vibrations in different devices	3	2	-	-	-	-	1	-	-
C404 (Average)		3	2	3	-	1	-	1	-	-

References:

1. Theory of machines – S.S .Rattan ,Tata McGraw-Hillpublications.
2. Theory of machines – R.K.Bansal ,Laxmipublications
3. Theory of machines – R.S. Khurmi&J.K.Gupta ,S.Chandpublications.
4. Dynamics of Machines – J B K Das, SapnaPublications.
5. Theory of machines – Jagdishlal, Bombay Metro – Politan bookLtd.
6. Theory of Machines & Mechanisms - Shishir Kumar, FPH
- 7.Theory of Machines & Mechanisms - Sanjay Goel, FPH

TOOL ENGINEERING

SubjectCode 2025405	Theory						Credits 03
	No. of Periods Per Week			FullMarks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand metal cutting and forming process and factors affecting machinability.
- To develop knowledge of tools, dies and tool materials.
- To understand processes for increased productivity and quality.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	1.1 Metal Cutting: Mechanics of Metal cutting; requirements of tools; cutting forces; types of chips; chip thickness ratio; shear angle; simple numerical only; types of metal cutting process; orthogonal; oblique and form cutting. 1.2 Cutting fluids: types; characteristics and applications. 1.3 Tool wear: Types of wear; Tool life; Tool life equations	12
Unit-II	2.1 Machinability: definition; factors affecting machinability; machinability index. 2.2 Tool materials: Types; characteristics; applications; Heat treatment of tool steels; Specification of Carbide tips; Types of ceramic coatings. 2.3 Cutting Tool Geometry: Single point cutting tool; drills; reamers; milling; cutters.	12
Unit-III	3.1 Types of dies and construction: Simple Die; Compound Die; Progressive Die; Combination Die. 3.2 Punch & Die mountings: pilots; strippers; misfeed detectors; Pressure Pads; Knock outs; stock guide; FeedStop; guide bush; guide pins.	12
Unit-IV	4.1 Die Design Fundamentals: Die Operations; blanking; piercing; shearing; cropping; notching; lancing; coining; embossing; stamping; curling; drawing; bending; forming; Die set; Die shoe; Die area; Calculation of clearances on die and punch for blanking and piercing dies; Strip layout; Calculation of material utilization factor.	12
Unit-V	5.1 Forming Dies: Bending methods; Bending Dies; bend allowance; spring back; spanning; bending pressure; pressure pads; development of blank length. 5.2 Drawing: operations; Metal flow during drawing; Calculation of Drawing blank size; variables affecting metal flow during drawing; single action and double action dies; combination dies. 5.3 Fundamentals of other Tools: Constructional features of - Pressure Die casting dies; metal extrusion dies; injection molding dies; forging dies; plastic extrusion dies.	12

Course outcomes

At the end of the course, the student will be able to:

- CO1 Apply concepts, principles and procedures of tool engineering
- CO2 Classify various types of tool and tool operations.
- CO3 Choose proper tool and die for the given manufacturing operations to achieve higher productivity .
- CO4 Estimate tool wear and tool life.

CO PO Mapping

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C405.1	Apply concepts, principles and procedures of tool engineering	3	2	-	-	-	-	1	-	-
C405.2	Classify various types of tool and tool operations	2	3	-	-	-	-	1	-	-
C405.3	Choose proper tool and die for the given manufacturing operations to achieve higher productivity	2	-	3	-	1	2	-	-	-
C405.4	Estimate tool wear and tool life	3	3	1	-	1	1	2	-	-
C405 (Average)		2.5	2.66	2	-	1	1.5	1.33		

Reference Books:

1. **Tool Design - Donaldson Anglin, Tata McGraw Hill.**
2. **Production Technology- H.M.T.Jain, Tata McGraw Hill.**
3. **A Text Book of Production engineering – P.C. Sharma, S.Chand& Co.**
4. **Production Technology, R.K.Jain, Khanna Publishers. Course outcomes:**
At the end of the course, the student will be able to:
5. **Tool Engineering - Prasant Banka, FPH**

MEASUREMENTS & METROLOGY LAB

SubjectCode 2025406	Theory						Credits 01
	No. of Periods Per Week			FullMarks	:	50	
	L	T	P/S	Internal	:	15	
		—	02	External	:	35	
	—	—	—		:		

Course Objectives:

To understand techniques for precise measurement of the dimensions of various objects and shapes.

Course Content:

S.No. Topics for practice

- I Measure the diameter of a wire using micrometer and compare the result with digital micrometer
- II Measure the angle of the machined surface using sine bar with slipgauges.
- III Measure the angle of a V-block / Taper Shank of Drill / Dovetail using universal bevelprotractor.
- IV Measure the dimensions of ground MS flat/cylindrical bush using Vernier Calliper compare with Digital/Dial VernierCalliper.
- V Measure the geometrical dimensions of V-Thread using thread Vernier gauge. VI Measure the thickness of ground MS plates using slipgauges

Courseoutcomes:

At the end of the course, the student will be able to:

- CO1 Measure various component of linear measurement using Vernier callipers and Micrometre.
- CO2 Demonstrate various component of angle measurement using sine bar and bevelProtractor.
- CO3 Calibrate the geometrical dimensions of V-thread and spurgear.

CO PO Mapping:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C406.1	Measure various component of linear measurement using Vernier callipers and Micrometer.	1	1	-	3	-	1	-	-	-
C406.2	Demonstrate various component of angle measurement using sine bar and bevelProtractor.	1	1	-	3	1	1	-	-	-
C406.2	Calibrate the geometrical dimensions of V-thread and spur gear.	1	2	-	2	-	2	-	-	-
C406 (Average)		1	1.33	-	2.66	0.33	1.33	-	-	-

Reference Books:

1. Engineering Metrology – R. K.Jain
2. Engineering precision metrology – R. C.Gupta
3. A Hand book of Industrial Metrology – ASME

MATERIAL TESTING LAB

Subject Code 2025407	Theory						Credits 02
	No. of Periods Per Week			Full Marks		:	
	L	T	P/S	Internal	:	50	
	—	—	04	External	:	35	
					:		

Course Objectives:

- To identify the type of material based on its grainstructure
- To learn the procedure for identifying the cracks in thematerial
- To understand various material testing methods to determine mechanical properties such as yield stress, Ultimatestress, percentage elongation, Young's Modulusetc.

Course Content:

S.No. Topics for practice

- I Prepare a specimen and examine the microstructure of the Ferrous and Non- ferrous metals using the MetallurgicalMicroscope.
- II Detectthecracksin thespecimenusing(i)Visualinspection andringtest(ii)Diepenetrationtest(iii)Magneticparticletest.
- III DeterminationofRockwell'sHardnessNumberforvariousmaterialslikemildsteel, highcarbon steel,brass,copperandaluminum.
- IV Finding the resistance of materials to impact loads by Izod test and Charpytest.
- V Torsion test on mild steel – relation between torque and angle of twist determination of shear modulus and shearstress.
- VI Finding Young's Modulus of Elasticity, yield points, percentage elongation and percentage reduction in area, stress strain diagram plotting, tests on mildsteel.
- VII Determination of modulus of rigidity, strain energy, shear stress and stiffness by loaddeflection method (Open & Closed coilspring)
- VIII Single or double Shear test on M.S. bar to finding the resistance of material to shearload.

Course outcomes

At the end of the course, the student will be able to:

- CO1 Identify the given specimen by viewing the micro structure using metallurgical microscope
- CO2 Mark the cracks in the specimen using different techniques
- CO3 Classify the various types of stress and plot the stress strain diagram for mild steel.
- CO4 Estimate the torsion, bending, impact and shear values of given materials
- CO5 Calculate the modulus of rigidity, strain energy, shear stress and stiffness of coil spring

CO PO Mapping:

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C407.1	Identify the given specimen by viewing the micro structure using metallurgical microscope	1	-	-	1	-	2	-	-	-
C407.2	Mark the cracks in the specimen using different techniques	1	-	-	2	-	2	-	-	-
C407.3	Classify the various types of stress and plot the stress strain diagram for mild steel.	1	2	-	2	-	2	-	-	-
C407.4	Estimate the torsion, bending, impact and shear values of given materials	1	1	-	3	-	2	-	-	-
C407.5	Calculate the modulus of rigidity, strain energy, shear stress and stiffness of coil spring	1	1	1	3	-	2	-	-	-
C407(Average)		1	0.80	0.20	2..16	-	2	-	-	-

Reference Books:

1. Measurement system (Application and Design) – Ernest ODoebelin.
2. Strength of Materials – R.S. Khurmi, S.Chand Company Ltd.Delhi
3. A Text Book strength of Material– R.K. Bansal, Laxmi Publication New Delhi

THERMALENGINEERING LAB-II

SubjectCode 2025408	Theory No. of Periods Per Week			FullMarks : 50 Internal : 15 External : 35			Credits 02
	L	T	P/S				
	—	—	04				
	—	—	—				
	—	—	—				

Course Objectives:

- To understand the working of boilers, compressors and IC engines.
- To observe various parts of engines and understand their functions.
- To perform various tests on IC engines and calculate performance parameters.
- To understand economical and optimum running conditions of the engines.

Course Content:

S.No. **Topics for practice**

- I Study of high-pressure boiler with model
- II Study of boiler mountings and accessories
- III Conduct performance test on VCR test rig to determine COP of the refrigerator
- IV Conduct performance test on multi stage reciprocating compressor
- V Conduct Morse test to determine the indicated power of individual cylinders
- VI Conduct Performance test on 2-S CI/SI engine.
- VII Conduct Performance test on 4-S CI/SI engine.
- VIII Conduct Heat balance test on CI/SI engine.
- IX Conduct Economical speed test on 4-S CI/SI engine.
- X Thermal conductivity test on 1) Thick slab 2) Composite wall 3) Thick cylinder
- XI Leak detection of refrigeration equipment
- XII Conduct performance test on A/C test rig to determine COP of the refrigerator

Course outcomes

At the end of the course, the student will be able to:

- CO1 Calculate the Thermal conductivity of thick slab, Composite wall and Thick cylinder.
- CO2 Perform the performance characteristics of single cylinder diesel/petrol engine at different loads and draw the heat balance sheet.
- CO3 Calculate the Indicated power of individual cylinders of an engine by using Morse test.
- CO4 Perform the performance characteristics test on Multi stage air compressor.
- CO5 Calculate the co efficient of performance of refrigerator using VCR and A/C test rig.
- CO6 Classify different types of high-pressure boiler and its mountings and accessories.

CO-PO Mapping

Course code.CO number	CO Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
C2025408.1	Calculate the Thermal conductivity of Thick slab, Composite wall and Thick cylinder	2	1		3	1	2	2		
C2025408.2	Perform the performance characteristics of single cylinder diesel/petrol engine at different loads and draw the heat balance sheet.	2			3	1	2			
C2025408.3	Calculate the Indicated power of individual cylinders of an engine by using Morse test.	2	2		3	1	2	2		
C2025408.4	Perform the performance characteristics test on Multi stage air compressor	2			3		1			
C2025408.5	Calculate the co efficient of performance of refrigerator using VCR and A/C test rig	1	1		3	1		2		
C2025408.6	Classify different types of high-pressure boiler and its mountings and accessories	3			1					
C2025408(Average)		2	0.66		2.66	0.66	1.16	1		

Reference Books:

1. Thermal Engineering – P.L. Ballaney, Khanna Publishers, 2002
2. A Course in Thermal Engineering – S. Domkundwar & C.P. Kothandaraman, Dhanpat Rai & Publication New Delhi
3. Thermal Engineering – R.S. Khurmi and J.K. Gupta, 18th Edition, S. Chand & Co, New Delhi

TERM WORK
MINOR PROJECT.

SubjectCode 2025409	Theory			FullMarks : 50 Internal : 15 External : 35	Credits : 02		
	No. of Periods Per Week						
	L	T	P/S				
		—	04				
	—	—	—				

Course objectives:

The projects if done right can help enthusiastic Mechanical engineering students to develop the skills/profile needed for an exciting career in core technologies. Since practical skills are very important to work on core industries, experts tend to analyze candidate's performance based on their project experience during the interviews.

These projects provide an excellent opportunity to learn and showcase your practical skills to your future interviewers easily. If spent qualitatively you can build a very innovative electrical project and get a great learning experience. By doing so, you will not only develop an innovative project but also develop valuable skills needed for a successful career in core technologies related to electrical engineering. The best way to master a subject is by doing projects. Through a project you not only get a deeper understanding of the subject but also gain hands-on practical experience. If you are looking to do internships in college, the best way to catch the companies' attention is through projects.

Projects are generally done as a combined team effort. Two or more students work under a guide or a staff to get a certain result. By doing a project, you will

- Understand your subject better
- Get practical experience
- Chance to showcase your skills
- Learn about team work, communication skills and responsibilities

When companies look for interns, they prefer students who have a good understanding of the subject with at least some hands-on experience. The best to achieve both is by doing projects.

There is no fixed time to do a project. You can do it right from your first year in college. If you are looking to do a technical project, then the best time to start would be mid second year. It's not mandatory that you do many projects but make sure that you at least do one project. A lot of students tend to do few small projects from their second year and do a big project in their final year. By showcasing your projects, you can even look for internships while in college.

You can do any kind of projects based on your interests or subjects. The best way to go about this is to figure out what you are interested in. So, the first step is to find your interest and then do projects in your area of interest. Find your area of interest and then do a project in that field.

TERM WORK
COURSE UNDER MOOCS / SWAYAM / OTHERS.

SubjectCode 2025410	Theory No. of Periods Per Week			FullMarks Internal External 	Credits 02
	L	T	P/S		
	—	—	04		
	—	—	—		

STATE BOARD OF TECHNICAL EDUCATION BIHAR

Scheme of Teaching and Examinations for

Vth SEMESTER DIPLOMA IN MECHANICAL ENGINEERING

(Effective from Session 2020-21 Batch)

THEORY

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME							
				Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks A	Class Test (CT) Marks B	End Semester Exam (ESE) Marks C	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks In The Subject
1.	Production & Operations Management	2025501	03	03	10	20	70	100	28	40	03
2.	Computer Aided Design & Manufacturing	2025502	03	03	10	20	70	100	28	40	03
3.	Automobile Engineering	2025503	03	03	10	20	70	100	28	40	03
4.	Elective-I		03	03	10	20	70	100	28	40	03
Refrigeration & Air-conditioning (2025504A)			Heat Transfer (2025504B)				Power Plant Engineering (2025504C)				
5.	Open Elective / COE		02	03	10	20	70	100	28	40	02
Industrial Engineering & Management (2025505A)			Farm Equipment & Farm Machinery (2025505B)				Artificial Intelligence (Basics) (2000505B)				
Internet of Things (Basics) (2000505C)			Drone Technology (Basics) (2000505D)				3D Printing & Design (Basics) (2000505E)				
Industrial Automation (Basics) (2000505F)			Electric Vehicles (Basics) (2000505G)				Robotics (Basics) (2000505H)				
			Total:- 14				350	500			14

PRACTICAL

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME						
				Periods per Week	Hours of Exam.	Practical(ESE)		Total Marks	Pass Marks In the Subject	Credits
						Internal (PA)	External (ESE)			
6.	CAD/CAM Lab	2025506	04 50% Physical 50% Virtual	03	15	35	50	20	02	
7.	Elective lab-I	2025507	02 50% Physical 50% Virtual	03	07	18	25	10	01	
Refrigeration & Air-conditioning Lab (2025507A)			Heat Transfer Lab (2025507B)				Power Plant Engineering Lab (2025507C)			
8.	Elective lab / COE Lab		04 50% Physical 50% Virtual	03	20	30	50	20	02	
Automobile Engineering Lab (2025508A)			Farm Equipment & Farm Machinery Lab (2025508B)				Artificial Intelligence Lab (Basics) (2000508 B)			
Internet of Things Lab (Basics) (2000508 C)			Drone Technology Lab (Basics) (2000508D)				3D Printing & Design Lab (Basics) (2000508E)			
Industrial Automation Lab (Basics) (2000508F)			Electric Vehicles Lab (Basics) (2000508G)				Robotics Lab (Basics) (2000508H)			
			Total:- 10				125			05

TERMWORK

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME				
				Periods per Week	Marks of Internal (PA)	Marks of External (ESE)	Total Marks	Pass Marks in the Subject
9.	Summer Intern- ship-II	2025509	(4 weeks continuous)	15	35	50	20	02
10.	Major Project	2025510	04	07	18	25	10	02
11.	Term Work		02	20	30	50	20	01
	Course under Moocs/ NPTEL / Others (2025511)	Artificial Intelligence (Basics) (TW) (2000511 B)	Internet of Things (Basics) (TW) (2000511 C)		Drone Technology (Basics) (TW) (2000511D)			
	3D Printing (Basics) (TW) (2000511E)	Industrial Automation (Basics) (TW) (2000511F)	Electric Vehicles (Basics) (TW) (2000511G)		Robotics (Basics) (TW) (2000511H)			
			Total:- 06				125	05
Total Periods per week Each of duration One Hour			30	Total Marks = 750				

PRODUCTION & OPERATIONS MANAGEMENT

Subject Code 2025501	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- One of the most critical areas for success in any business enterprise is how Production and Operations are managed.
- To study the statistics, economics, finance, organizational behavior and strategy into a consolidated production and operation related decisions.
- To discuss the role of location strategy and the criteria for location decisions.
- To define quality and explain quality management, including TQM and its tools.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	1.1 Process Planning and Process Engineering: Process Planning: Introduction, Function, Pre-requisites and steps in process planning, Factors affecting process planning, Make or buy decision, plant capacity and machine capacity. 1.2 Process Engineering: Preliminary Part Print Analysis: Introduction, Establishing the General Characteristics of work piece, determining the principal Process, Functional surfaces of the work piece, Nature of the work to be Performed, Finishing and identifying operations. 1.3 Dimensional Analysis: Introduction, types of dimensions, measuring the Geometry of form, Baselines, Direction of specific dimensions. Tolerance Analysis: Causes of work piece variation, Terms used in work piece dimensions, Tolerance stacks. Work piece Control: Introduction, Equilibrium Theories, Concept of location, Geometric Control, Dimensional control, Mechanical control.	10
Unit-II	2.1 Production Forecasting: Introduction of production forecasting, The strategic role of forecasting in supply chain, Time frame, Demand behavior, Forecasting methods- Qualitative and Quantitative, Forecast accuracy. 2.2 Scheduling: Introduction, Objectives in scheduling, Loading, Sequencing, Monitoring, Advanced Planning and Scheduling Systems, Theory of Constraints, Employee scheduling.	10
Unit-III	3.1 Break-Even Analysis: Introduction, Break-even analysis charts, Breakeven analysis for process, plant and equipment selection. 3.2 Aggregate Operations Planning: Aggregate production planning, Adjusting capacity to meet the demand, Demand management, Hierarchical and collaborative planning, Aggregate planning for services.	
Unit-IV	4.1 Assembly Line Balancing: Assembly lines, Assembly line balancing, Splitting tasks, Flexible and U- shaped line layouts, Mixed model line balancing, Current Thoughts on assembly lines, Computerized assembly line balancing.	12
Unit-V	5.1 Material Management: Introduction, Importance and objectives, Purchasing and Stores: policies and procedures, Vendor development, selection, analysis and rating.	10

References:

1. Production and Operations Management – K. Aswathappa, K. Shridhara Bhat, Himalaya Publishing House, 2014.
2. Production and Operations Management – Shailendra Kale, McGraw Hill Educations(India) Private Limited, 2013.
3. Production and Operations Management – R.Paneerselvam, PHI Learning Private Limited, 2013.
4. Operations Management – Joseph Monk, TMH Publishers, New Delhi, 2004.
5. Production and Operation Management - Ramakant khandelwal , FPH

Course outcomes:

At the end of the course, the student will be able to:

CO1 Define operations management and explain its relationship to productivity. And also understand tools and techniques.

CO2 Describe the importance of forecasting and explain the effective application of the different forecasting approaches and methods.

CO3 Explain layout strategy and how operations managers determine facility arrangements and size.

CO4 Describe how operations managers achieve a reasonable work environment and set expectations related to employee productivity.

CO5 Understand make-or-buy decisions, and the selection and integration of suppliers. And how much to order and when to order.

COMPUTER AIDED DESIGN AND MANUFACTURING

Subject Code 2025502	Theory			Full Marks : 100 ESE : 70 TA : 10 CT : 20	Credits 03		
	No. of Periods Per Week						
	L	T	P/S				
	03	—	—				
	—	—	—				

Course objectives:

To understand concepts of drafting and modelling using CAD.

- To understand the need for integration of CAD and CAM.
- To understand the concepts of flexible manufacturing system.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	1.1 Fundamentals of CAD/CAM: Automation; Design process; Application of computers for design; Benefits of CAD; Computer configuration for CAD applications; Design workstation; Graphic terminal. 1.2 CAD Software: Definition of system software and application software; CAD database and structure. 1.3 Geometric modelling: 3D-Wire frame modelling; Wire frame entities and their definitions; Interpolation and Approximation of curves; Concept of Parametric and Non-parametric representation of curves; Curve fitting techniques.	12
Unit-II	2.1 Surface Modeling: Algebraic and Geometric form; Parametric space of surface; Blending functions; Parametrization of surface patch; Subdividing; Cylindrical surface; Ruled surface; Surface of revolution; Spherical surface; Composite surface; Bezier surface; 2.2 Solid Modelling: Definition of cell composition and spatial occupancy enumeration; Sweep representation; Constructive solid geometry; Boundary representations.	12
Unit-III	3.1 NC Control Production Systems: Numerical control; Elements of NC system; NC part programming; Methods of NC part programming; Manual part programming, Computer assisted part programming; Post processor; Computerized part program.	12
Unit-IV	4.1 Group Technology: Part families; Parts classification and coding; Production analysis; Machine cell design; 4.2 Computer aided process planning: Retrieval type and Generative type; Machinability data systems; MRP and its Benefits.	12
Unit-V	5.1 Flexible manufacturing system: F.M.S equipment; Layouts; Analysis methods and benefits; Computer aided quality control. 5.2 Automated inspection: Off-line, On-line, Contact, Non-contact; Coordinate measuring machines; Machine vision; CIM system and Benefits.	12

Reference Books:

1. **CAD/CAM Principles and Applications**, P.N.Rao, Tata McGraw-Hill
2. **Computer Aided Design and Manufacturing**, Groover M.P. & Zimmers Jr, Prentice hall of India
3. **CAD/CAM/CIM**, Radha Krishna P. & Subramanyam, Wiley Eastern Ltd

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Develop mathematical models to represent curves and surfaces and Model engineering components using solid modeling techniques.
- CO2 Understand geometric transformation techniques in CAD.
- CO3 Develop programs for CNC to manufacture industrial components.
- CO4 Understand the application of computers in various aspects of Manufacturing viz., Design, Proper planning,
- CO5 Manufacture in cost, Layout & Material Handling system.
Utilize Flexible manufacturing system tools.

AUTOMOBILE ENGINEERING

Subject Code 2025503	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand the basic structure and components of an automobile.
- To understand the concepts of cooling and lubricating systems.
- To understand the concepts of Ignition and transmission and steering systems.
- To understand the classification and necessity of suspension system.
- To identify different special vehicles.

CONTENTS: THEORY

Unit	Name of Topic	HS
Unit-I	Introduction to basic structure of an automobile: 1.1 Basic engine components; Cylinder block; Cylinder head; Gaskets; cylinder liners, types of cylinder liners; Piston and piston pin; piston rings, types of piston rings; Connecting rod; Crank shaft; Cam shaft; Crankcase; Engine valves; Fly- wheel and Governer.	10
Unit-II	Cooling and lubrication system: 2.1 The necessity of cooling system; Types of cooling system-air cooling and water cooling; Air cooling system; Types of water cooling system Thermosyphon system and pump circulation system; Advantages and disadvantages of air cooling and water cooling systems; The components of water cooling System fan, radiator, pump and thermostat; 2.2 The necessity of lubrication system; S.A.E rating of lubrication system; Types of lubrication system; Petrol lubrication and high pressure lubrication system. 2.3 Fuel feed system: Conventional fuels and alternative fuels: Cetane and octane numbers; Types of carburettors; Working of simple carburettor; Multi point and single point fuel injection systems; Different fuel transfer pumps; Working of S.U electrical and A.C mechanical pump; Fuel filters; Fuel injection pump; Fuel injectors.	10
Unit-III	Ignition system: 3.1 Introduction to ignition system; Battery Ignition systems and magneto Ignition system; Electronic Ignition system; Construction and working of lead acid battery; Elements of charging system; Elements of starting system; Types of lights Used in the automobile: Transmission and steering system: 3.2 General arrangement of clutch; Principle of friction clutches; Constructional details of Single plate clutch; Constructional details of multi- plate clutch; Constructional details of centrifugal clutch; Necessity for gear ratios in transmission; Types of gear boxes; Working of sliding mesh gear box; Working of constant mesh gear box; Working of propeller shaft Working of propeller shaft; Working of Universal joint; Working of differential; Types of rear axle; Purpose of front axle; 3.3 Necessity of steering system; Caster, camber and king pin inclination; Rack and pinion steering system; Power steering.	10

Unit-IV	Suspension system: 4.1 Necessity of suspension system; Torsion bar suspension systems; Leaf spring and coil spring suspension system; Independent suspension for front wheel and rear wheel; Working of telescopic shock absorber; 4.2 Functions of brakes; Types of brakes; Working of internal expanding brake; Working of disc brake	10
Unit-V	Special vehicles: 5.1 Introduction to Special vehicles; Tractor; Motor grader; Scrappers; Excavators; Duper trucks.	06

References:

1. Automobile Engineering Vol I, II, Kirpal Singh, Standard Publishers Distributors, Delhi.2012.
2. Automobile Mechanics, A.K. Babu, S.C. Sharma, Khanna Publications, New Delhi
3. Automotive Mechanics: Principles and Practices, Joseph Heitner, East West Press
4. Automotive Mechanics, S. Srinivasan, 2nd Edition, Tata McGraw Hill
5. Automobile Engineering Vol I and Vol II, K. M. Gupta, Umesh Publications.
6. Automotive Engineering, Jain and Asthana, Tata McGraw Hill.
7. Automobile Engineering - K P Singh, FPH
8. Automobile Engineering - Sunil Rout, FPH

Course outcomes:

At the end of the course, the student will be able to:

CO1 Identify the components of an automobile with their working
 CO2 Explain the concepts of cooling and lubricating systems.
 CO3 Explain the concepts of Ignition and Transmission and steering systems.
 CO4 Identify different suspension systems and their applications.
 CO5 Differentiate the special vehicles according to the usage.

ELECTIVE- I
REFRIGERATION AND AIR-CONDITIONING

Subject Code 2025504A	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand the basics of Refrigeration cycles.
- To understand basics of vapour compression and vapour absorption systems.
- To identify components and refrigerants and lubricants of a refrigeration system.
- To understand control strategies for refrigeration system.
- To understand the basics about air conditioning systems.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	Introduction to Refrigeration: 1.1 Definition of Refrigeration; Refrigerating effect, unit of refrigeration, Coefficient of performance; Types of Refrigeration-Ice, dry ice, Steam jet, Throttling, Liquid nitrogen refrigeration; 1.2 Carnot refrigeration Cycle; Air refrigeration Bell Coleman cycle, PV& TS diagram; Advantage and disadvantages in air refrigeration; Simple problems.	10
Unit-II	Refrigeration systems: 2.1 Basic Components, Flow diagram of working of Vapour compression cycle; Representation of the vapour compression cycle on P-H, T-S & P-V Diagram; Expression for Refrigerating effect, work done and power required; Types of Vapour Compression cycle; Effects of super heating and under cooling, its advantages and disadvantages; 2.2 Simple Vapour absorptions cycle and its flow diagram; Simple Electrolux system for domestic units; Comparison of Vapour absorption and vapour compression system; Simple Problems on vapour compression cycle.	08
Unit-III	Refrigeration Equipments: 3.1 Compressor - types of compressors; Hermetically sealed and Semi hermetically sealed compressor; Condensers Air Cooled, water cooled, natural and force draught cooling system; Advantages and disadvantages of air cooled and water cooled condensers. 3.2 Evaporators – natural convection, forced convection types. Refrigerants and lubricants: Introduction to refrigerants; Properties of good refrigerants; Classification of refrigerants by group number and commonly used refrigerants in practice; Detection of refrigerants leakage; Charging the system with refrigerant; Lubricants used in refrigeration and their properties.	10
Unit-IV	Refrigerant flow controls: 4.1 Capillary tube; Automatic Expansion valve; Thermostatic expansion valve; High side and low side float valve; Solenoid valve; Evaporator pressure regulator. 4.2 Application of refrigeration: Slow and quick freezing; Cold storage and Frozen storage; Dairy refrigeration; Ice making industry; Water coolers.	10

Unit-V	<p>Air conditioning:</p> <p>5.1 Introduction to Air conditioning; Factors affecting Air conditioning; Psychometric chart and its use; Psychometric process-sensible heating and cooling, Humidifying and dehumidifying; Adiabatic saturation process; Equipment's used in air conditioning cycle; Air conditioning units and plants.</p> <p>5.2 Refrigeration and Air-conditioning tools: Tools used in refrigeration And Air conditioner installation; Installation procedure; Faults in refrigeration and air conditioning system; Servicing procedure.</p>	10
--------	--	----

References:

1. Refrigeration and Air Conditioning – Sadhu Singh, Khanna Book Publishing Co., New Delhi
2. Refrigeration and Air Conditioning – S. Domakundawar, DhanpatRai publications.
3. Refrigeration and Air Conditioning – A.S.Sarao& G.S. Gabi, 6th edition, SatyaPrakashan publications, New Delhi, 2004.
4. Principles of Refrigeration – Roy J.Dossat, 5th edition, Pearson Publications, 2001.
5. Refrigeration and Air Conditioning – M.ZakriaBaig, Premier/ Radiant Publishing House.
6. Refrigeration & Air-conditioning - Rohit Vashista , FPH
7. Refrigeration and Air Conditioning – C.P Arora, Tata McGraw Hill Education, 2000.

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Define refrigeration and types of Refrigeration cycles
- CO2 Explain Vapour Compression and Vapour Absorption System working principles
- CO3 Identify the components required for refrigeration system.
- CO4 Identify the controlling components for a refrigeration system.
- CO5 Explain the working principles of Air-conditioning.

Elective-I

Heat Transfer

Subject Code 2025504B	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

CONTENTS: THEORY

Unit	Topic	Hrs.
Unit-I	Conduction: 1.1 Fourier law of heat conduction for isotropic material; Thermal conductivity; Derivation of the energy equation in three dimensions including transient effect; 1.2 Non dimensional - thermal diffusivity and Fourier number; Types of boundary conditions (Dirchlet, Neumann, mixed type); One dimensional solution with and without heat generation; Analogy with electrical circuits.	10
Unit-II	Fins: 2.1 Rectangular and pin fins. Fin effectiveness and efficiency. Critical thickness of insulation. Lumped parameter approach and physical significance of time constant, Biot number, Validity of lumped parameter approach. Introduction to Heisler Chart.	08
Unit-III	Convection: 3.1 Introduction, Newton's law of cooling; Momentum and energy equations in two dimensions; non depersonalization, importance of non-dimensional quantities and their physical significance. 3.2 Velocity and thermal boundary layer thickness by integral method. Analogies between momentum, heat and mass transfer. Natural convection, effect of coupling on the conservation equations.	10
Unit-IV	Radiation : 4.1 Physical mechanism of thermal radiation, laws of radiation, definition of black body, emissive power, intensity of radiation, emissivity, reflectivity, transmissivity, irradiation, radiosity. 4.2 Radiation exchange between black bodies, concept of Gray Diffuse Isotropic (GDI) surface. Radiation exchange between GDI surfaces by radiation network and radiosity matrix method. Radiation shielding.	10

Unit-V	Heat exchangers: 5.1 Types of heat exchangers, parallel and counter flow types, Introduction to LMTD. Correction factors, fouling factor. NTU method for heat exchangers.	10
---------------	--	-----------

References:

1. Fundamentals of Heat and Mass Transfer by F.P. Incropera and D.P. Dewitt, 4th ed., John Wiley & Sons.
2. Heat Transfer - A Basic Approach by M.N.Ozisik, McGrawhill.
3. Heat Transfer by J.P.Holman, 8th ed., McGrawhill.
4. Elements of Heat & Mass Transfer by Vijay Gupta, 2nd ed., New Age International Publishers.

Course outcomes:

At the end of the course, the student will be able to:

CO1 Understand the concepts of conduction
 CO2 understand the concepts of fins
 CO3 Understand the concepts of radiation.
 CO4 Understand the concepts of convection
 CO5 Understand the basic concepts of heat exchangers.

ELECTIVE- I
POWER PLANT ENGINEERING

Subject Code 2025504C	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand the present scenario of power in India.
- To recognize various load terminologies used in power plants.
- To understand hydro working principles
- To understand working of Diesel, Gas and Nuclear powerplants.
- To understand the issues and safety precautions in power plants.

CONTENTS: THEORY

Unit	Topic	Hrs/
Unit-I	Introduction to Power plant: 1.1 Introduction to power plant; Indian Energy scenario in India; Location of power plant; Choice of Power plant; Classification of power plants.	10
Unit-II	Economics of power plant: 2.1 Terminology used in power plant: Peak load, Base load, Load factor, Load curve; Various factor affecting the operation of power plant; Methods of meeting the fluctuating load in power plant; Load sharing- cost of power-tariff methods; Performance and operating characteristics of power plant. the fluctuating load in power plant; Load sharing- cost of power-tariff methods; Performance and operating characteristics of power plant.	08
Unit-III	Hydro power plant: 3.1 Introduction to Hydro electric power plant; Rainfall, Runoff and its measurement, Hydrograph, flow duration curve; Selection of sites for hydro electric power plant; General layout of Hydro electric power plant and its working; 3.2 Classification of the Plant-Run off river plant, storage river plant, pumped storage plant; Advantages and Disadvantages of hydro electric power plant.	10
Unit-IV	Diesel and Gas turbine plant: 4.1 The layout of diesel power plant; Components and the working of diesel power plant; Advantages and disadvantages of diesel power plant; 4.2 Gas turbine power Plant-Schematic diagram, components and its working; Combined cycle power generation- Combined gas and steam turbine Power plant operation (only flow diagram).	10

	4.3 Nuclear power plant: Introduction; Nuclear Power Radio activity- Radioactive charge-types of re- actions; Working of a nuclear power plant; Thermal fission Reactors- PWR, BWR and gas cooled reactors; Advantages and Disadvantages of Nuclear power plant.	
Unit-V	Environmental impact of Power plant: 5.1 Social and Economical issues of power plant; Green house effect; Acid precipitation- Acid rain, Acid snow, Dry deposition, Acid fog; Air, water, Thermal pollution from power plants; Radiations from nuclear power plant effluents. 5.2 Power plant safety: Plant safety concept; Safety policy to be observed in power plants; Safety practices to be observed in boiler operation; Safety in oil handling system; Safety in Chemical handling system; Statutory provision related to boiler operation.	10

References:

1. Power plant Engineering-P.K. Nag 4th edition, Tata McGraw Hill Education, 2014.
2. Power plant Engineering – Frederick T. Morse, Litton Educational Publishing Inc. 1953.
3. A Course in Power Plant Engineering – Subhash C. Arora, S. Domakundwar, DhanpatRai, 1984.
4. Power Plant Engineering – P.C. Sharma, S.K.Kataria& sons, 2009.
5. Power System Engineering – R.K. Rajput, Firewell Media,2006.

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Familiarised with the present and future power scenario
- CO2 Enlist various load terminologies in power plants
- CO3 Working and classifications in hydro powerplant
- CO4 Working principles of Diesel, Gas and Nuclear power plants.
- CO5 Understand the issues and necessity of safety concepts of power plants.

INDUSTRIAL ENGINEERING & MANAGEMENT

Subject Code 2025505A	Theory						Credits 02
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	02	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To take the right decisions to optimize resources utilization by improving productivity of the Lands, Buildings, People, Materials, Machines, Money, Methods and Management effectively.
- To eliminate unproductive activities under the control of the Management, Supervisor, worker and the Design of Products and Processes.
- To use the Charts to record the Activities of the people, materials and Equipment to find alternative methods which minimize waste and to implement the best method.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	Plant Engineering: 1.1 Plant; Selection of site of industry; Plant layout; Principles of a good layout; Types; Process; Product and Fixed position; Techniques to improve Layout; Principles of Material handling equipment; 1.2 Plant maintenance; Importance; Break down maintenance; Preventive maintenance and Scheduled maintenance. Plant Safety: Importance; Accident: Causes and Cost of an Accident, Accident Proneness, Prevention of Accidents; 1.3 Industrial disputes; Settlement of Industrial disputes; Collective bargaining; Conciliation; Mediation; Arbitration; Indian Factories Act 1948 and its provisions related to health, welfare and safety.	10
Unit-II	Work Study: 2.1 Productivity; Standard of living; Method of improving Productivity; Objectives; Importance of good working conditions. Method Study: Definition; Objectives; Selection of a job for method study; Basic procedure for conduct of Method study; Tools used; Operation process chart; Flow process chart; Two handed process chart; Man Machine chart; String diagram and flow diagram. 2.2 Work Measurement: Definition; Basic procedure in making a time study; Employees rating factor; Application of time allowances: Rest, Personal, Process, Special and Policy allowances; Calculation of standard time; Numerical Problems; Basic concept of production study; Techniques of Work Measurement; Ratio delay study; Synthesis from standard data; Analytical estimating and Pre determined Motion Time System (PMTS).	10
Unit-III	Production Planning and Control: 3.1 Introduction; Major functions of Production Planning and Control; Pre planning; Methods of forecasting; Routing and Scheduling; Dispatching and Controlling; Concept of Critical Path Method (CPM); Types of Production: Mass Production, Batch Production and Job Order Production; Characteristics; Economic Batch Quantity (EBQ); Principles of Product and Process Planning; Make or Buy decision; Numerical problems. 3.2 Quality Control: Definition; Objectives; Types of Inspection: First piece, Floor and Centralized	12

	Inspection; Advantages and Disadvantages; Statistical Quality Control; 3.3 Types of Measurements; Method of Variables; Method of Attributes; Uses of X, R, p and c charts; Operating Characteristics curve (O.C curve); Sampling Inspection; Single and Double Sampling plan; Concept of ISO 9001:2008 Quality Management System Registration/ Certification procedure; Benefits of ISO to the organization.	
Unit-IV	Principles of Management: 4.1 Definition of Management; Administration; Organization; F.W. Taylor's and Henry Fayol's Principles of Management; Functions of Manager; Types of Organization: Line, Staff, Taylor's Pure functional types; Line and staff and committee type; Directing; Leadership, Styles of Leadership; Qualities of a good leader; Motivation; Positive and Negative Motivation; 4.2 Modern Management Techniques; Just In Time; Total Quality Management (TQM); Quality circle; Zero defect concept; 5S Concept; Management Information Systems. Personnel Management; 4.3 Responsibility of Human Resource Management; Selection Procedure; Training of Workers; Apprentice Training; On the Job training and Vestibule School Training; Job Evaluation and Merit Rating; Objectives and Importance; Wages and Salary Administration; Component of Wages; Wage Fixation; Type of Wage Payment: Halsey's 50% Plan, Rowan's Plan and Emerson's efficiency plan; Numerical Problems.	06
Unit- V	Financial Management: 5.1 Fixed and Working Capital; Resources of Capital; Shares Preference and Equity Shares; Debentures; Type of debentures; Public Deposits; Factory Costing: Direct Cost; Indirect Cost; Factory Overhead; Selling Price of a product; Profit; Numerical Problems; Depreciation; Causes; Methods: Straight line, sinking fund and percentage on Diminishing Value Method; Numerical Problems. 5.2 Material Management: Objectives of good stock control system; ABC analysis of Inventory; Procurement and Consumption	10

References:

1. Industrial Engineering & Management, S.C. Sharma, Khanna Book Publishing Co. (P) Ltd., Delhi
2. Industrial Engineering and Management, O.P. Khanna, Revised Edition, Dhanpat Rai Publications (P) Ltd., New Delhi – 110002.
3. Management, A global perspective, Heinz Weihrich, Harold Koontz, 10th Edition, McGraw Hill International Edition 1994.
4. Essentials of Management, 4th Edition, Joseph L. Massie, Prentice-Hall of India, New Delhi 2004.
5. Principles and Practices of Management, Premvir Kapoor, Khanna Publishing House, N. Delhi

Course outcomes:

- CO1 Explain the different types of layout and plant maintenance with safety
- CO2 List and explain the need of method study and work measurements
- CO3 Explain the production planning and quality control, and its functions
- CO4 Understand the basic principles, approaches and functions of management and identify concepts to specific situations
- CO5 List and explain the different financial sources and methods of inventory management.

Open Elective / COE
FARM EQUIPMENT AND FARM MACHINERY

Subject Code 2025505B	Theory						Credits 02
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	02			TA	:	10	
				CA	:	20	

Course objectives:

- To find and characterize the machinery based on crop production.
- To find the field efficiency and capacities to calculate the economics of machinery.
- To find the machines usages for different tillage, and its power requirement calculations.
- To understand sowing, planting & transplanting equipment based on crop.
- To understand machinery materials and heat effects for different farm machinery equipment.

CONTENTS: THEORY

Unit	Name of Topic	Hrs
Unit-I	Introduction to farm mechanization: 1.1 Classification of farm machines. Unit operations in crop production. Identification and selection of Machines for various operations on the farm. Hitching systems and controls of farm machinery.	08
Unit-II	Calculation of field capacities and field efficiency: 2.1 Calculations for economics of machinery usage, comparison of ownership with hiring of machines. Introduction to seed-bed preparation and its classification. Familiarization with land reclamation and earth moving equipment	10
Unit-III	Introduction to machines 3.1 used for primary tillage, secondary tillage, rotary tillage, deep tillage and minimum tillage. Measurement of draft of tillage tools and calculations for power requirement for the tillage machines. Introduction to tillage machines like mould-board plough, disc plough, chisel plough, sub-soiler, harrows, puddler, cultivators, identification of major functional components. Attachments with tillage machinery	10
Unit-IV	Introduction to sowing, planting & transplanting equipment. 4.1 Introduction to seed drills, no-till drills, and strip-till drills. Introduction to planters, bed planters and other planting equipment like sugarcane, potato. Study of types of furrow openers and metering systems in drills and planters. Calibration of seed-drills/ planters. Adjustments during operation	10
Unit-V	Introduction to materials used in construction of farm machines. 5.1 Heat treatment processes and their requirement in farm machines. Properties of materials used for critical and functional components of agricultural machines. 5.2 Introduction to steels and alloys for agricultural application. Identification of heat treatment processes specially for the agricultural machinery components.	10

References:

1. Farm Equipment & Farm Machinery - Sanjay Pandey , FPH
2. Farm Machinery and Equipment - H. P. Smith
3. Farm Machinery and equipment - C. P. Nakra
4. Engineering principles of Agril. Machines - Dr. Ajit K. Srivastav, Caroll E. Goering and Roger P. Rohrbach.
5. Farm Machinery – an Approach - S. C Jain & Grace Phillips
6. Agril. Engineering through worked out examples - Dr. R. Lal and Dr. A.C. Dutta
7. Farm Power and Machinery Engineering - Dr.R. Suresh and Sanjay Kumar

Course outcomes:

At the end of the course, the student will be able to:

CO1 Classify the Farm Machineries, equipment and materials

CO2 Describe the objectives of Farm mechanization.

CO3 Explain selection of the machineries

CO4 Discuss the forces acting on tillage tools and hitching systems

CO5 Understand the calibration, constructional features and working of various farm equipments.

A) **Course Code** : 2000505B / 2000508B /2000511B
 B) **Course Title** : Artificial Intelligence (Basics)
 C) **Pre- requisite Course(s)** :
 D) **Rationale** :

Artificial intelligence is the theory and development of computer systems able to perform tasks such as, visual perception, speech recognition, decision-making etc. normally requiring human intelligence. Data analytics gives the basis of developing any artificial intelligence system.

The Python programming language is one of the most accessible programming languages, has several modules to write programs to solve Artificial Intelligence, Machine Learning, Data Analysis problems. Moreover, it has simplified syntax and versatile data structures and functionsto speed up the code writing efficiently.

This course provides the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This course also provides the students the foundations for data analytics with python. The course explains data science techniques and the various Python programming packages required to prepare data for analysis, perform data analytics and create meaningful data visualization.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course , the students will be able to-

CO-1 Elaborate the use of Artificial Intelligence for the problem solving as Technological driver.
CO-2 Write Python Programmes for solving problems.
CO-3 Analyze given data by using NumPy package of Python.
CO-4 Analyze given data by using Pandas package of Python.
CO-5 Visualize given data set using Matplotlib.

F) **Suggested Course Articulation Matrix:**

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)(if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1	-	2	2	-	-	-	1			
CO-2	-	3	3	3	-	-	2			
CO-3	-	3	3	3	-	-	2			
CO-4	-	2	3	3	-	-	2			
CO-5	-	3	3	3	-	-	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

CourseCode	CourseTitle	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (SW+ SL)	Total Hours (CI+LI+SW+SL)	Total Credits(C)
		L	T				
2000505B / 2000508B /2000511B	Artificial Intelligence (Basics)	02	-	04	02	08	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI : Laboratory Instruction (Includes experiments/practical performances in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work / Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, open educational resources (OERs)

C: Credits = $(1 \times \text{CI hours}) + (0.5 \times \text{LI hours}) + (0.5 \times \text{Notional hours})$

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA+LA)	
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)			
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
2000505B / 2000508B /2000511B	Artificial Intelligence (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/ Term work& Self Learning Assessment (Includes assessment related to student performance in self learning, assignments, Seminars, micro projects, industrial visits, any other student activities etc.)

Note: Separate passing is must for progressive and end semester assessment for both theory and practical.

Theory: 100 marks
Practical 50 marks

I) **Course Curriculum Detailing:**

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) **Theory Session Outcomes (TSOs) and Units: [2000505B]**

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO 1a. Elaborate the use of Artificial Intelligence TSO 1b. Explain various technological Drivers of Modern AI TSO 1c. Describe Knowledge representation TSO 1d. Classify Intelligent agents TSO 1e. List the characteristics of agents TSO 1f. Apply various search strategies for problem solving	Unit-1.0. Artificial Intelligence Artificial Intelligence: What is AI?, Types of AI, History of AI, Turing Test, Symbol Systems and the scope of Symbolic AI, Structure of AI, Goals of AI, Importance of AI, Techniques used in AI, Perception, Understanding and Action, Technological drivers of modern AI Knowledge: Definition, Knowledge Representation, objectives and requirements, practical aspects of representation, Components Intelligent Agents: Agents and Environments, Properties of environments, characteristics of agents, classification of agents Problem Solving: Problem Formulation, Goal Formulation, State Space Search, Search Problem, Basic search algorithm, Search Tree, Search strategies – Uninformed and informed search, Breadth First Search, Depth First Search, Best First Search, Constraint Satisfaction Problem (CSP), Backtracking Search. Problem Definitions: N Queen Problem, 8Puzzle Problem, Tic-tac-Toe.	CO-1
TSO 2a. Explain Python tokens and variables TSO 2b. Use the concept of l-value and r-value TSO 2c. Write python program using various data types TSO 2d. Write Program using various operators in Python TSO 2e. Write program using conditional	Unit-2.0 Python Programming 2.1 Python character set, Python tokens, variables, concept of l-value and r-value, use of comments. Data types: number (integer, floating point, complex), boolean, sequence (string, list, tuple), none, mapping (dictionary),	CO-2

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>statements.</p> <p>TSO 2f. Use various string functions for problem solving in python program</p> <p>TSO 2g. write programmes using various operations on list</p> <p>TSO 2h. Write programmes by using various operations on Tuples and Dictionary</p> <p>TSO 2i. Create user defined functions</p> <p>TSO 2j. Write python programmes using built-in functions</p> <p>TSO 2k. Describe the procedure to import module in the Python</p> <p>TSO 2l. Describe procedure to Import Library and functions in the Python</p> <p>TSO 2m. Write program using Iterative statements.</p>	<p>mutable and immutable data types</p> <p>Operators: arithmetic operators, relational operators, logical operators, assignment operator, augmented assignment operators. Expressions, statement, type conversion & input/output: precedence of operators, expression, evaluation of expression.</p> <p>Conditional and Iterative statements: if, if-else, if-elif-else, for loop, range function, while loop, break and continue statements, nested loops</p> <p>String, List, Tuples and Dictionary:</p> <p>String: indexing, string operations (concatenation, repetition, membership & slicing), traversing a string using loops, built-in functions.</p> <p>Lists: introduction, indexing, list operations (concatenation, repetition, membership & slicing), traversing a list using loops, built-in functions, linear search on list of numbers and counting the frequency of elements in a list</p> <p>Dictionary: accessing items in a dictionary using keys, mutability of dictionary (adding a new item, modifying an existing item), traversing a dictionary, built-in functions</p> <p>Python Functions: types of function (built-in functions, functions defined in module, user defined functions), creating user defined function, arguments and parameters, default parameters, positional parameters, function returning value(s), flow of execution, scope of a variable (global scope, local scope)</p> <p>Modules and Packages: Importing module using 'import' Regular Expressions, Exception Handling, PyPI Python Package Index, Pip Python package manager, Importing Libraries and Functions</p>	

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 3a. Explain Data Analytics and its elements</p> <p>TSO 3b. Differentiate Data Analysis and Data Analytics</p> <p>TSO 3c. Explain the use of open source data</p> <p>TSO 3d. Differentiate Qualitative and Quantitative data analysis</p> <p>TSO 3e. Explain procedure to Install NumPy Library</p> <p>TSO 3f. Use NumPy library to perform various operations and functions on array</p> <p>TSO 3g. Write Programs using NumPy for array manipulations</p>	<p>Unit-3.0 Data Analytics and Computing with NumPy</p> <p>Data Analytics: Data, Types of Data, Importance of Data, Data Analysis Vs Data Analytics, Types of Data Analytics, Elements of Analytics, Data Analysis Process, Qualitative and Quantitative analyses, Open Source Data.</p> <p>NumPy Library: Introduction, Installation, Ndarray: creating an array, intrinsic creation of an array, Data types, basic operations, aggregate functions, Indexing, slicing, Iterating, Conditions and Boolean arrays, Array manipulation: Joining, splitting, shape changing, sorting, Structured arrays, Reading and Writing array data on a File.</p>	CO-3
<p>TSO 4a. Apply Pandas data structure for data analysis</p> <p>TSO 4b. Write Programs using Pandas to perform various operations and functions on series.</p> <p>TSO 4c. Perform various operation in a Data Frame columns and rows</p> <p>TSO 4d. Write Programme to read and write on CSV, XLS and Text data files</p> <p>TSO 4e. Apply various data cleaning operations and prepare data.</p>	<p>Unit-4.0 Data Analysis with Pandas</p> <p>Pandas data structures: Series, Declaration, selecting elements, assigning values, Filtering values, operations, mathematical functions, evaluating values, handling missing data, creating series from dictionaries, adding two series.</p> <p>Data Frame: Defining, selecting elements, assigning values, membership, deleting a column, filtering. Index Objects: Indexing, Re-indexing, Dropping, sorting and ranking, Descriptive Statistics</p> <p>Data Loading: Reading and Writing csv, xls, text data files, Data Cleaning and Preparation: Handling missing data, removing duplicates, replacing values, Vectorized String Methods, Hierarchical Indexing, Merging and Combining, Data aggregation and Grouping.</p>	CO-4
<p>TSO 5a. Illustrate the use of Matplotlib and PyPlot package for showing plots and images</p> <p>TSO 5b. Customize plots with Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids</p> <p>TSO 5c. Differentiate various charts based on their applications</p>	<p>Unit-5.0 Data Visualization with Matplotlib</p> <p>Data Visualization: Introduction to Matplotlib, PyPlot package, Figures and Subplots, showing plots and images</p> <p>Customizing Plots: Colors, Markers, Line Styles, Limits, Tics, Labels, Legends, Grids, Annotating with text, Matplotlib configuration</p>	CO-5

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	Chart types: Line, Bar, stacked bar, Box plots, pie chart , Histogram and Density plots, Scatter plot, Saving Plots to a file, Close and clear plots.	

Note: One major TSO may require more than one Theory session/Period.

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508B]

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
Use various data types and operators to solve given problem Use conditional and iterative statements for solving given problem	1	Conditional and Iterative statements 1a. Write a program to generate random numbers between 5 and 10. 1b. Write a program to find the square root of a number. 1c. Write a python program to check if a number is positive, negative or 0. 1d. Write Python program to print all prime numbers between 0-50.	CO-2
2.1 Use string functions for performing various string operations	2	String Handling 2a. Write a Programme that asks the user for a string with only single space between words, and return number of words in the string. 2b. Write a Program that inputs a line of text and print the count of Vowels in it. 2c. Write a Program that inputs a line of text and print the biggest word in it. 2d. Write a Program that inputs a line of text and print a new line of text where each word of input line is reversed.	CO-2
Use list operations for concatenation, repetition & slicing Perform various operation in the Tuples Perform various operation in the dictionary	3	List, Tuples and Dictionary 3a. Write a python program to convert a string to a list. 3b. Write a program to print the largest number in a list. 3c. Given a tuple pairs = ((3,9), (8,4), (3,7), (24,18)), count the number of pairs (a, b) such that both a and b are odd. 3d. Write a program to input a list of numbers and swap elements at the even location with the elements at the odd location. 3e. Write a program to merge two dictionaries.	CO-2
4.1 Use built-in functions to solve given problem	4	Python Functions 4a. Write a function to reverse a string. 4b. Write a function to calculate the factorial of a	CO-2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
4.2 Create user defined functions to solve given problem		number.	
use basic data structure using NumPy Convert the list and tuple as NumPy array	5.	Basic data structures in NumPy 5a. Create a List, set, tuple and dictionary which stores the details of a student (roll no, name, dept, branch, percentage of mark) in Python and print the values. 5b. Convert the list and tuple as NumPy array.	CO-3
Create Arrays in Numpy using different intrinsic methods Perform arithmetic operations and mathematical operations using arange and ones intrinsic method.	6	Arrays in NumPy 6a. Create arrays using different intrinsic methods (ones, zeros, arange, linspace, indice) and print their values. 6b. Check the results of arithmetic operations like add(), subtract(), multiply() and divide() with arrays created using arange and ones intrinsic method. 6c. Check the results of mathematical operations like exp(), sqrt(), sin(), cos(), log(), dot() on an array created using arange intrinsic method.	CO-3
7.1 Apply aggregate functions on data by using Built-in functions in Numpy	7	Built-in functions in NumPy. 7a. Load your class Mark list data from a csv (comma separated value) file into an array. Perform the following operations to inspect your array. Len(), ndim, size, dtype, shape, info() 7b. Apply the aggregate functions on this data and print the results. (Functions like min(), max(), cumsum(), mean(), median(), corrcoef(), std())	CO-3
8.1 Handle multiple arrays by applying various operations on arrays	8	Handling Multiple Arrays 8a. Create two python NumPy arrays (boys, girls) each with the age of nstudents in the class. 8b. Get the common items between two python NumPy arrays. 8c. Get the positions where elements of two arrays match. 8d. Remove from one array those items that exist in another. 8e. Extract all numbers between a given range from a NumPy array.	CO-3
9.1 Apply indexing on the given set of data	9	Indexing in NumPy 9a. Load your class Mark list data from a csv file into an array. 9b. Access the mark of a student in a particular subject using indexing techniques. 9c. Select a subset of 2D array using fancy indexing (indexing using integer arrays	CO-3

Practical/Lab Session Outcomes(LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
Create series using list and dictionary in pandas Print different values from series.	10	Working with a Series using Pandas 10a. Create a series using list and dictionary. 10b. Create a series using NumPy functions in Pandas. 10c. Print the index and values of series. 10d. Print the first and last few rows from the series.	CO-4
11.1 Perform various operation in a Data Frame rows	11	Working with Data Frame Rows 11a. Slicing Data Frame using loc and iloc. 11b. Filter multiple rows using isin. 11c. Select first n rows and last n rows 11d. Select rows randomly n rows and fractions of rows (use df.sample method) 11e. Count the number of rows with each unique value of variables 11f. Select nlargest and nsmallest values. 11g. Order/sort the rows	CO-4
12.1 Apply different techniques to merge and combine data	12	Merge and combine data 12a. Perform the append, concat and combine first operations on Data Frames. 12b. Apply different types of merge on data. 12c. Use a query method to filter Data Frame with multiple conditions.	CO-4
Create Linear Plot to identify various relation in the data using Matplotlib Create Scatter Plot to identify various relation in the data using Matplotlib	13	Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage. Download the data set from https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset 13a. Create a linear plot to identify the relationship between years of working experience and the annual wages with suitable title, legend and labels. 13b. Create a scatter plot to identify the relationship between years of working experience and the annual wages with title, legend and labels. 13c. Also distinguish between observations that have more than 5 years of working experience and observations that have less than 5 years of working experience by using different colors in one single plot.	CO-5
14.1 Plot Bar graph by Changing	14	Consider the Iris dataset, where	

Practical/Lab Session Outcomes(LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
		of the Set osa iris class using a bar chart. 14b. Format the obtained bar graph by Changing the color of each bar, Change the Edge color, Line width and Line style.	

L) Sessional Work and Self Learning: [2000511B]

a. **Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. **Micro Projects:**

1. Handing Two-dimensional array in NumPy

Download the data set from

<https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data>
<https://www.kaggle.com/arshid/iris-flower-dataset>

- a. Import iris dataset with numbers and texts keeping the text intact into python NumPy.
- b. Convert the 1D iris to 2D array (iris2d) by omitting the species text field.
- c. Find the number and position of missing values in iris2d's sepal_length
- d. Insert np.nan values at 20 random positions in iris 2d dataset
- e. Filter the rows of iris2d that has petal_length > 1.5 and sepal_length < 5.0

Expected Outcome(Use various operations on two dimensional arrays in NumPy)

2. Handling missing data and duplicates in Pandas

- a. Identify rows with missing data (isnull(), notnull()) and replace NA/Null data with a given value.
- b. Drop rows and columns with any missing data (dropna(), dropna(1))
- c. Find duplicate values and drop duplicates.
- d. Fill the missing values using forward filling and backward filling.
- e. Replace the missing value with new value and write the dataframe to a CSV file in the local directory.

Expected Outcomes (a. Identify missing data, b. Find Duplicates values, c. Write the dataframe to a CSV file in the local directory.)

3. Working with Data Frame Columns

- a. Create and print a Data Frame.
- b. Find the descriptive statistics for each column.
- c. Group the data by the values in a specified column, values in the index.
- d. Set Index and columns in a Data Frame.
- e. Rename columns and drop columns
- f. Select or filter rows based on values in columns.
- g. Select single and multiple columns with specific names

Expected Outcome (Perform various operation in a Data Frame columns)

4. Indexing & Sorting in NumPy

- a. Load your class Mark list data from a csv file into an array.
- b. Sort the student details based on Total mark.

c. Print student details whose total marks is greater than 250 using Boolean indexing.

Expected Outcomes (a. Sort the given set of data, b. Use indexing in an array)

5. Array Slicing in NumPy

- a. Load your class Mark list data into an array called "marks" to store students roll num, subject marks and result.
- b. Split all rows and all columns except the last column into an array called "features".
- c. Split the marks array into 3 equal-sized sub-arrays each for 3 different subject marks.
- d. Split the last column into an array "label".
- e. Delete the roll num column from the marks array and insert a new column student name in its place.

Expected Outcome (Use array slicing in NumPy for the given set of data)

6. Consider the Iris dataset, where observations belong to either one of three iris flower classes.

Download the data set from

<https://www.kaggle.com/arshid/iris-flower-dataset>

- a. Visualize the Histogram for each feature (Sepal Length, Sepal Width, petal Length & petal Width) separately with suitable bin size and color.
- b. Plot the histograms for all features using subplots to visualize all histograms in one single plot. Save the plot as JPEG file.
- c. Plot the box plots for all features next to each other in one single plot. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.

Expected Outcomes (a. Plot the Histogram for the various features using subplot, b. Plot the box plots for all features next to each other in one single plot)

c. Other Activities:

1. Lab Activities

- Install Python IDE and important Python Libraries
- Install Anaconda and find the features of Jupyter Notebook.
- Import various module using 'import '
- Use Pip Python package manager.
- Import Libraries and Functions in Python

2. Seminar Topics:

- Technological rivers of modern Artificial Intelligence
- Intelligent Agents and Environments in Artificial Intelligence
- Various Search Strategies
- Python for Data Science
- Python Libraries and Packages used in data Science
- Data Visualisation
- Various data set available over Internet

3. Self-learning topics:

- Use of AI in Engineering and Technology
- Data Science and Machine Learning
- Problem and Goal Formulation
- Search strategies
- Breadth First Search and Depth First Search
- Back tracking Search

- N Queen and 8 Puzzle Problem

M) Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate **CO attainment**.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Sessional Work Assessment (SWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Sessional Work & Self Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignments	Micro Projects	Other Activities*		
CO-1	20%	20%	20%	--	30%	--	--
CO-2	10%	10%	20%	--	20%	20%	20%
CO-3	20%	20%	20%	30%	20%	20%	20%
CO-4	30%	30%	20%	20%	30%	30%	30%
CO-5	20%	20%	20%	50%	--	30%	30%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

* : Other Activities include self learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

: Mentioned under point-(O)

Note: For indirect assessment of COs, Course exit survey can be used which comprises of questions related to achievement of each COs.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Title and Number	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Artificial Intelligence	CO-1	15	7	5	3
Unit-2.0. Python Programming	CO-2	15	4	3	8
Unit-3.0. Data Analytics and Computing with NumPy	CO-3	14	3	3	8
Unit-4.0. Data Analysis with Pandas	CO-4	13	3	3	7
Unit-5.0. Data Visualization with Matplotlib	CO-5	13	3	3	7
Total Marks		70	20	17	33

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA (%)	PDA (%)	
1.	Conditional and Iterative statements	CO-2	-	80	20
2.	String handling	CO-2	-	80	20
3.	List, Tuples and Dictionary	CO-2	20	70	10
4.	Python Functions	CO-2	-	80	20
5.	Basic data structures in NumPy	CO-3	-	80	20
6.	Arrays in NumPy	CO-3	-	80	20
7.	Built-in functions in NumPy.	CO-3	20	70	10
8.	Handling Multiple Arrays	CO-3	20	70	10
9.	Indexing in NumPy	CO-3	-	70	30
10.	Working with a Series using Pandas	CO-4	-	80	20
11.	Working with DataFrame Rows	CO-4	20	60	20
12.	Merge and combine data	CO-4	40	50	10
13.	Consider the Salary dataset, which contains 30 observations consisting of years of working experience and the annual wage.	CO-5	80	10	10
14.	Consider the Iris dataset, where observations belong to either one of three iris flower classes.	CO-5	80	10	10

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology(ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GB HDD	S.No. 1 to 14
2.	Online Python IDE	https://www.online-python.com/	S.No. 1 to 14
3.	Jupyter Notebook	Download from https://jupyter.org/	S.No. 1 to 14
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S.No. 1 to 14
5.	Various modules, Libraries and Packages	NumPy, Pandas, Matplotlib,PyPlot package	S.No. 1 to 14

R) Suggested Learning Resources:

(a) Suggested Books :

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Artificial Intelligence Basics - A Non-Technical Introduction	TomTaulli	Apress(2019)
2.	Fundamentals of artificial Intelligence	Chowdhary K. R	Springer 2020
3.	Artificial Intelligence A Modern approach	Stuart J. Russell and Peter Norvig	PrenticeHall 2010, 3 rd Edition
4.	Introduction to Computing and Problem Solving using Python	E. Balagurusamy	McGraw Hill Education(India)Pvt. Ltd. 1 st Edition /2016
5.	Learning Python Programming	Jeffrey Elkner, Allan B.Downey, Chris Meyers	Samurai Media Limited. 2016
6.	Python Programming	Ashok Namdev Kamthane and Amit Ashok Kamthane	McGraw Hill Education(India) Pvt.Ltd.2020, 2 nd Edition
7.	Programming in Python	Dr. Pooja Sharma	BPB Publications 2017
8.	Taming Python By Programming	Jeeva ose	Khanna Book Publishing Co(P)Ltd , 2017, Reprinted2019
9.	Python Data Analytics	Fabio Nelli	Apress,2015
10.	Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython	Wes McKinney	O'REILLY 2018,SecondEdition

(b) Suggested Open Educational Resources (OER):

1. NPTEL Web Content- Artificial Intelligence, Prof. P. Mitra, Prof. S. Sarkar, IIT Kharagpur URL: <https://nptel.ac.in/courses/106/105/106105078/>
2. <https://www.learnpython.org>
3. www.python.org
4. <https://www.tutorialspoint.com/python>

Note:

Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

Data Source:

- <https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/>
- <https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data>
- <https://www.kaggle.com/arshid/iris-flower-dataset>
- <https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset>

S) Course Curriculum Development Team(NITTTR)

- Dr. Sanjay Agrawal(Coordinator)
- Dr. R. K. Kapoor(Co-coordinator)

A) Course Code : **2000505C / 2000508C / 2000511C**
B) Course Title : **Internet of Things (Basic)**
C) Pre- requisite Course(s) : **Digital Electronics, Electronics Circuits, Fundamentals of Computers and Computer networks**

D) Rationale:

The Internet of Things (IoT) is the upcoming field that has the capability to connect everything on the earth. This course focuses on the development of IoT concepts such as sensing, actuation with implementation of communication protocols.

The course also focuses on real life aspects of IoT and how to integrate it in real life projects. The course will simplify the concept of IoT by using the Node MCU board for IoT application development. In this course students will learn about the use of Node MCU and its applications as a beginner/intermediate in the field of IoT. Apart from this, students will learn about the APIs, by using which integration of features like send Email, WhatsApp messages and notification based on certain events in projects is possible. Overall, this course covers both hardware and software aspects of IoT with practical exposure.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1** Describe the functions of each block of the basic IoT system
- CO-2** Explain communication protocol used in IoT and its applications
- CO-3** Use appropriate sensors for the specific measurement through the IoT platform
- CO-4** Explain APIs, client-server connections and its integration in real life applications.
- CO-5** Build and test a complete, working IoT system involving prototyping, programming, and data analysis

F) Suggested Course Articulation Matrix:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs) (if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1	3	-	-	-	-	-	-			
CO-2	1	2	2	2	2	-	-			
CO-3	1	3	2	2	2	2	2			
CO-4	1	1	2	3	-	2	2			
CO-5	1	1	3	2	2	3	3			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

CourseCode	CourseTitle	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instru ction (LI)	Notional Hours (SW+ SL)	Total Hours (CI+LI+SW+SL)	
		L	T				
2000505 C / 2000508 C / 2000511C	Internet of Things (Basic)	02	-	04	02	08	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI : Laboratory Instruction (Includes experiments/practical performances in laboratory, workshop, field or other locations using different instructional/implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work/Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, open educational resources (OERs)

C: Credits = $(1 \times \text{CI hours}) + (0.5 \times \text{LI hours}) + (0.5 \times \text{Notional hours})$

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA +LA)	
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)			
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
2000505 C / 2000508 C / 2000511C	Internet of Things (Basic)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/Term work & Self Learning Assessment (Includes assessment related to student performance in self learning, assignments, Seminars, micro projects, industrial visits, any other student activities etc.)

Note: Separate passing is must for progressive and end semester assessment for both theory and practical.

Theory: 100 marks

Practical 50 marks

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) **Theory Session Outcomes (TSOs) and Units: [2000505C]**

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO.1.a. Describe the concept of IoT.</p> <p>TSO.1.b. Explain the functions of each block of the Basic IoT system.</p> <p>TSO.1.c. Compare features of various IoT platforms</p> <p>TSO.1.d. List IoT Real time Applications.</p> <p>TSO.1.e. Describe the functioning of given real-time applications</p>	<p>Unit-1.0 Introduction to IoT Basics of IoT, concepts of IoT, History of IoT Basic IoT System and its building blocks Various platforms for IoT (e.g. AWS, AZURE, GCP) Introduction to Python programming and IoT software Applications of IoT</p>	CO-1 and CO-5
<p>TSO.2.a. Explain various communication protocols.</p> <p>TSO.2.b. Explain working and application of bluetooth</p> <p>TSO.2.c. Explain working and application of ZigBee</p> <p>TSO.2.d. Explain working and application of LoRa</p> <p>TSO.2.e. Explain working and application of Wi-fi</p>	<p>Unit 2. IoT Communication protocols Basics of given communication protocol along with its applications Explain Communication Protocols MQTT Bluetooth Low Energy ZigBee LoRa Wi-fi</p>	CO-1 and CO2
<p>TSO.3.a. Differentiate between sensor and Actuator.</p> <p>TSO.3.b. Classify IoT sensors on the basis of their application.</p> <p>TSO.3.c. Describe the function of each block of Node MCU.</p> <p>TSO.3.d. Explain the procedure to connect sensors with Node MCU.</p>	<p>Unit-3.0 Sensors and Hardware for IoT Sensors and Actuators, Transducers, Classifications of sensors, IoT Sensors Development Boards, classifications, and basics of wireless networks, WiFi libraries Introduction to node MCU, block diagram, functions, interfacing with sensors and publishing data on webserver Device integration with node MCU Interfacing of sensors with boards</p>	CO-1, CO-3 and CO-5
<p>TSO.4.a. Define APIs and its uses</p> <p>TSO.4.b. Explain working and application of REST.</p> <p>TSO.4.c. Explain working and application of SOAP</p> <p>TSO.4.d. Explain working and application of json</p> <p>TSO.4.e. Explain the integration of API in IoT application development.</p>	<p>Unit.4 IoT APIs and its Integration Explain APIs and its use Explanation of given IoT APIs along with its applications MQTT, Broker, subscriber, publisher REST SOAP 4.5 JSON 4.6 Programming API using Python</p>	CO-1 and CO-4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.5.a. Differentiate between industrial IoT and IoT. TSO.5.b. Describe the applications of IoT in the medical field. TSO.5.c. Describe the medical applications of IoT in the agriculture field. TSO.5.d. Describe the innovative IoT applications.	Unit. 5 IoT Applications: - Industrial IoT and Internet of everything IoT for consumer electronics products IoT for Medical applications IoT for Agriculture IoT for security and Law enforcement	CO-1 and CO-5

Note:One major TSO may require more than one Theory session/Period.

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508 C]

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1 List various IoT platforms. List Down broad features of given platforms. List IoT based features in python language.	1.	Prepare a list of platforms used for IoT. Prepare a list of features of above IoT platforms. Prepare a list of features provided by python language for IoT applications.	CO-1
LSOs 2.1 Arduino connection with Arduino IDE. Connect Bluetooth with Arduino. verification of data communication with Bluetooth.	2.	Establish connectivity between various components of IoT. Establish connection between Arduino and Bluetooth module. Establish connection using WiFi	CO-2
LSO 3.1 Measure the temperature of the given sensor. LSO 3.2 Measure the humidity of the given sensor. LSO 3.3 Measure the pressure of the given sensor.	3.	Publish data on the IoT platform. Measure the temperature of a remotely located temperature sensor Using IOT based temperature data-monitoring system. Measure the humidity of a remotely located humidity sensor Using IOT based humidity data-monitoring system. Measure the pressure of a remotely located pressure sensor Using IOT based pressure data-monitoring system.	CO-3
LSO 4.1 Working with APIs. LSO 4.2 Implementation of APIs using POSTMAN Application.	4	Download and Configure POSTMAN Application Verify REST APIs through POSTMAN. Verify JSON APIs through POSTMAN. Verify SOAP APIs through POSTMAN.	CO-4
LSO 5.1 Identification of components for various applications. LSO 5.2 Estimate the cost for components.	5.	Identify components for given project Estimate the cost to make Project working.	CO-5

L) Sessional Work and Self Learning: [2000511C]

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Prepare a report on IoT Systems using Internet data.
2. Market survey to identify various types of IoT sensors and its pricing.
3. Interface IR sensor with Arduino and send the data to Arduino cloud.
4. Send IoT data using Node MCU to things Speak cloud.
5. Interface Bluetooth module with Arduino and send data using the Bluetooth module.

c. Other Activities:

1. Seminar Topics: - "Future of IoT"
"Technologies for IoT", "Smart City and IoT"
2. Visit to industry for latest IoT setup in industrial process.
3. Surveys of market for availability of various types of sensors and its pricing.
4. Product Development: Development of projects for real life problem solution using IoT.
5. Software Development: various open source platform operations.

6. Self-learning topics:

1. IoT hardware and their use for various applications
2. IoT sensors technical specifications
3. IoT enabled services

M) Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate **CO attainment**.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Sessional Work Assessment (SWA)			Lab Assessment (LA)†	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Sessional Work & Self Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignments	Micro Projects	Other Activities*		
CO-1	10%	10%	20%	--	33%	10%	20%
CO-2	15%	10%	20%	--	33%	15%	20%
CO-3	30%	30%	20%	--	34%	15%	20%
CO-4	20%	30%	20%	50%	--	30%	20%
CO-5	25%	20%	20%	50%	--	30%	20%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

* : Other Activities include self learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

: Mentioned under point-(O)

Note: For indirect assessment of COs, Course exit survey can be used which comprises of questions related to achievement of each COs.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Title and Number	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to IoT	CO-1	5	3	2	-
Unit-2.0. IoT Communication protocols	CO-2	9	4	3	2
Unit-3.0. Sensors and Hardware for IoT	CO-3	19	5	6	8
Unit-4.0 IoT APIs and its Integration	CO-4	19	5	5	9
Unit-5.0. IoT Applications	CO-5	18	3	6	9
Total Marks		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA (%)	PDA (%)	
1.	Prepare a list of platforms used for IoT.	CO-1	60	30	10
2.	Prepare a list of features of above IoT platforms.	CO-1	60	30	10
3.	Prepare a list of features provided by python language for IoT applications.	CO-1	60	30	10
4.	Establish connectivity between various components of IoT.	CO-2	60	30	10
5.	Establish connection between Arduino and Bluetooth module.	CO-2	60	30	10
6.	Establish connection using WiFi	CO-2	70	20	10
7.	Publish data on the IoT platform.	CO-3	70	20	10
8.	Measure the temperature of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	40	10
9.	Measure the humidity of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	40	10
10.	Measure the pressure of a remotely located temperature sensor Using IOT based temperature data-monitoring system.	CO-3	60	40	10
11.	Publish the data using Mqtt	CO-4	60	30	10
12.	Download and Configure POSTMAN Applications	CO-4	60	30	10
13.	Verify REST APIs through POSTMAN.	CO-4	60	30	10
14.	Verify JSON APIs through POSTMAN.	CO-4	60	30	10
15.	Verify SOAP APIs through POSTMAN.	CO-4	60	30	10
16.	Identify components for given project	CO-5	50	40	10
17.	Estimate the cost to make Project working.	CO-5	50	40	10

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1	Bluetooth Modem- BlueSMiRF Silver	Sparkfun Bluetooth modem	As mentioned above list
2	Postman Software	Open-source downloadable	
3	Node MCU board	Generic	
4	IoT free cloud	Arduino cloud/Thing Speak/Blynk	
5	ATAL Lab Package-1 Package-2 Package-4	As per the list as address below ATAL Equipment list' (http://aim.gov.in/guidelines-for-school.php).	

R) Suggested Learning Resources:

(a) Suggested Books :

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1	Internet of Things Architecture and Design Principles	Raj Kamal	Mc Graw Hills, New Delhi ISBN 13: 978-93-90722-38-4

2	Internet of things (IoT) : technologies, applications, challenges and solutions	Edited By BK Tripathy , J Anuradha	CRC Press ,ISBN 9780367572921, June 30, 2020	
3	Internet-of-Things (IoT) Systems: Architectures, Algorithms, Methodologies	by Dimitrios Serpanos & Marilyn Wolf	Springer; 1st ed. 2018 edition (17 January 2018)	
4	Custom Raspberry Pi Interfaces: Design and build hardware interfaces for the Raspberry	Pi by Warren Gay	Apress; 1st ed. edition (23 February 2017), ISBN-10 : 9781484224052, ISBN-13 : 978-1484224052	
5	'Learning Internet of Things',	Peter Waher	Packt Publishing, 2015, ISBN 9781783553532, https://lib.hpu.edu.vn/handle/123456789/31693	
6	Sensors, Actuators and Their Interfaces,	N. Ida	Scitech Publishers, 2014.	

(b) Suggested Open Educational Resources (OER):

1. nptel.iitm.ac.in/courses/.../IIT.../lecture%202023%20and%202024.htm
2. en.wikipedia.org/wiki/Shear_and_moment_diagram
3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
4. www.engineerstudent.co.uk/stress_and_strain.html
5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
6. <https://www.veritis.com/blog/aws-vs-azure-vs-gcp-the-cloud-platform-of-your-choice/>
7. <https://wiki.python.org/moin/TimeComplexity>
8. www.engineerstudent.co.uk/stress_and_strain.html
9. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
10. Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work.
11. <https://github.com/OpenRCE/sulley>

Note: Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

1. Learning Packages
2. Users' Guide
3. Manufacturers' Manual
4. Lab Manuals

S) Course Curriculum Development Team(NITTR)

- Dr. M. A. Rizvi(Coordinator)
- Dr. Anjali Potnis(Co-coordinator)

A)	Course Code	:	2000505D / 2000508D / 2000511D
B)	Course Title	:	Drone Technology (Basics)
C)	Pre- requisite Course(s)	:	
D)	Rationale	:	

Rapid technological innovation has provided users cutting-edge products at affordable prices. Traditionally, drones had been limited to military use due to high costs and technical sophistication. In recent years, the drone has number of commercial uses and are also proving to be extremely beneficial in places where a man cannot reach or is unable to perform in a timely and efficient manner. Today, drones are used in construction, photography, agriculture, defense, environmental studies and monitoring and other industries to protect the skies, repopulate forests and accomplish much more on a huge scale. This course will acquaint the student with the basic drone technology and applicable drone rules and regulations in India. Considering that the main operational areas of diploma holders, it is essential that he should be exposed to basic drone designing, programming, operating, maintaining and using them safely.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- CO-1** Operate a drone safely by applying appropriate drone rules and regulations.
- CO-2** Design the structure of drone with drone components and equipment.
- CO-3** Interface flight controller board with sensors, ESC and radio communication unit in drone technology.
- CO-4** Use drone simulator and identify different types of ports and connectors of drone.
- CO-5** Use python programming while drone designing.

F) **Course Articulation Matrix:**

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)(if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1	2	-	-	-	3	-	2			
CO-2	3	2	3	3	-	-	-			
CO-3	3	2	3	3	-	-	-			
CO-4	2	-	-	2	-	3	2			
CO-5	-	2	2	3	-	-	-			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

CourseCode	CourseTitle	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (SW+ SL)	Total Hours (CI+LI+SW+SL)	
		L	T				
2000505D / 2000508D / 2000511D	Drone Technology (Basics)	02	-	04	02	08	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI : Laboratory Instruction (Includes experiments/practical performances in laboratory, workshop, field or other locations using different instructional/implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work/Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, open educational resources (OERs)

C: Credits = $(1 \times \text{CI hours}) + (0.5 \times \text{LI hours}) + (0.5 \times \text{Notional hours})$

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA+LA)	
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)			
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
200505D / 200508D / 200511D	3D Printing and Design (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)
PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/Term work & Self Learning Assessment (Includes assessment related to student performance in self-learning, assignments, Seminars, micro projects, industrial visits, any other student activities etc.)

Note: Separate passing is must for progressive and end semester assessment for both theory and practical.

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) **Theory Session Outcomes (TSOs) and Units:** [2000505D]

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 1a. Describe the various historical evolutionary steps of drone technology</p> <p>TSO 1b. Explain Drone motion based on principle of aerodynamics.</p> <p>TSO 1c. Classify different types of drones and make chart of its application, advantages and disadvantages.</p> <p>TSO 1d. Develop attitude to follow proper rules and regulations of drones flying in India.</p> <p>TSO 1e. Explore future prospects of drones in India.</p>	<p>Unit-1.0Introduction to Drone Technology</p> <p>Introduction to Drones and UAV</p> <ul style="list-style-type: none"> • Definition • History • Drone in Indian aspect <p>Introduction to Flight Dynamics</p> <p>Various types of Drones and their respective Applications</p> <ul style="list-style-type: none"> • Multirotor drones • Fixed wing structure <p>Drone flights using an understanding of FAA</p> <ul style="list-style-type: none"> • DGCA • Digital sky platform • RPTO <p>1.5 Drone regulations-No drone zones</p>	CO-1
<p>TSO 2a. Explain the use and function of different types of Drone components.</p> <p>TSO 2b. Select suitable drone frame and propellers for given application.</p> <p>TSO 2c. Explain working principle and function of different sensors used in drone technology.</p> <p>TSO 2d. Write use of Gyro sensor and Accelerometer in drone.</p> <p>TSO 2e. Describe different types and capacity of Battery used in various drone applications.</p> <p>TSO 2f. State the selection criteria of motor for given drone application.</p> <p>TSO 2g. Write advantage of BLDC motors in making of Drones.</p>	<p>Unit-2.0Droneand its components</p> <p>Drones components</p> <ul style="list-style-type: none"> • Drone frame • Propellers <p>Sensors</p> <ul style="list-style-type: none"> • Gyro sensor and Accelerometer • Speed and Distance Sensor • Temp sensor • Barometer • TOF Sensor <p>Battery</p> <ul style="list-style-type: none"> • Types and Capacity <p>Motors</p> <ul style="list-style-type: none"> • Motor types • Motor capabilities • Application of BLDC motors in drones 	CO-2
<p>TSO 3a. Explain four types of motion used in drone's operation.</p> <p>TSO 3b. Describe the working and applications of Electronic speed controller.</p> <p>TSO 3c. Explain the working principle of Flight controller unit used in drone.</p>	<p>Unit-3.0 Drone controller and motion</p> <p>Propulsion and Vertical Motion</p> <p>Controller and Flying Instructions</p> <ul style="list-style-type: none"> • Electronic speed Controller (ESC) • Flight Controller Board(FCB) 	CO-3

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 3d.	Explain Radio communication unit used in drone.	Radio Communication	
TSO 3e.	Explain the communication of Flight controller board with motor, ESC and sensors with suitable diagram	<ul style="list-style-type: none"> Transmitter and Receiver for radio signal 	
TSO 4a.	Describe utility of different communication port used in drone.	Unit-4.0 Connections and Interfaces of Devices in Drone and Drone Simulator	CO-4
TSO 4b.	Identify different types of connectors and write their specifications.	Communication Port	
TSO 4c.	Explain the use of drone simulator software and hardware.	<ul style="list-style-type: none"> PWM RS232, RS422, RS485 UART CAN I2C <p>Different types of connectors and its specification</p> <p>Drone Simulator software</p> <p>Drone simulator Hardware</p>	
TSO 5a.	Write basic code in Python.	Unit-5.0 Introduction to Python for Drone	CO-5
TSO 5b.	Explain structure and components of a Python program.	Python programing refreshers for IoT, AI and Drone	
TSO 5c.	write syntax of loops and decision statements in Python.	Integration of devices with cloud services	
TSO 5d.	Explain steps to create functions and pass arguments in Python.	Microsoft Azure, AWS	

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508D]

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1 Choose suitable materials for making drone frame.	1.	Determine the strength of materials used in drones frame.	CO-2
LSO 2 Select suitable materials for making drone propellers.	2.	Determine the strength of materials used in drones Propellers.	CO-2
LSO 3 Use appropriate battery as per need of flight time for specific drone application.	3.	Test different parameters of batteries used in drones	CO-2
LSO 4 Identify suitable motors as per payload of specific drone application.	4.	Test motors suitable for specific Drone application.	CO-2
LSO 5 Operate Gyro sensor and Accelerometer.	5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2
LSO 6.1 Identify different sensors based on their characteristics. LSO 6.2 Interface different types of sensor in drone.	6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3
LSO 7 Demonstrate four type of drone motion.	7.	Determine thrust/torque of motor by changing different drone motion	CO-2, CO-3
LSO 8.1 Configure Flight control board (FCB) LSO 8.2 Demonstrate use of Flight control board (FCB)	8.	Test and troubleshoot Flight control board (FCB).	CO-3
LSO 9.1 Measure various parameters of sensor LSO 9.2 Interface sensor with flight controller board.	9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2
LSO 10 Use motor with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2
LSO 11 Interface ESC with flight controller board.	11.	Test and perform communication of Flight control board with ESC.	CO-3
LSO 12 Configure radio communication device to control drones	12.	Test and perform communication of Flight control board with RF transceiver.	CO-3
LSO 13.1 Identify different types of ports and connectors of drone. LSO 13.2 Assemble drone component.	13.	Test Hardware assembly for drone.	CO-4 CO-3
LSO 14.1 Identify different motions in drone simulator. LSO 14.2 Operate drone in simulator for specific task	14.	Perform different motion in drone simulator.	CO-4
LSO 15.1 Write code of loop and decision statement in python. LSO 15.2 Interpret loop and decision statement LSO 15.3 Debug code of loop and decision statement	15.	Build and run loops and decision statements for specific application in Python.	CO-5
LSO 16.1 Make function in python. LSO 16.2 Interpret given function statement	16.	Build and Run functions for specific application and pass arguments in Python.	CO-5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 16.3 Debug code of function in python			
LSO 17.1 Identify python programming steps to interface drone components.	17.	Write basic programming in python to interface different component of Drones.	CO-5, CO-3
LSO 17.2 Identify error in python program			
LSO 17.3 Debug the given python program			

L) Sessional Work and Self Learning: [2000511D]

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Design drone for simple application.
2. Test different sensors, their characteristics and make chart which are used in different drones' applications.
3. Download 5 videos on drone design with different components. Watch them and write report on it.
4. Write report on Drone application for precision agriculture.
5. Survey nearby electronics shop and Prepare report of list of drone component and its specification.
6. Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.

c. Other Activities:

1. Seminar Topics-History of Drone, Drone regulations, Proximity sensor, Bernoulli's principle apply in drone, Radio communication used in drones, Drone Simulator, Python Programming.
2. Visits: Visit nearby tool room, small industry, Drone training institute facilities. Prepare report of visit with special comments of drone technology used, material used, cost of printed component.
3. Surveys: Survey nearby electronics shop and Prepare report of list of drone component and its specification and explore Drone simulator.
4. Product Development
5. Software Development

d. Self learning topics:

1. History of Drones
2. Drone in Indian aspect
3. Drone regulations
4. Principle of aerodynamics for Drones
5. Drone simulator

M) Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response /performance of each student in each of these designed activities is to be used to calculate **CO attainment**.

	Course Evaluation Matrix				
	Theory Assessment (TA)**		Sessional Work Assessment (SWA)		Lab Assessment (LA) [#]
	Progressive Theory Assessment	End Theory Assessment (ETA)	Sessional Work & Self Learning Assessment		Progressive Lab Assessment (PLA)

COs	(PTA) Class/Mid Sem Test		Assignments	Micro Projects	Other Activities*		
CO-1	10%	10%	10%	--	10%	-	-
CO-2	30%	30%	30%	33%	30%	30%	30%
CO-3	30%	30%	30%	34%-	30%	30%	30%
CO-4	15%	10%	15%	-	15%	20%	20%
CO-5	15%	20%	15%	33%	15%	20%	20%
Total Marks	30	70	20	20	10	20	30
				50			

Legend:

* : Other Activities include seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

: Mentioned under point-(O)

Note: To calculate CO attainment 80% weightage of direct assessment tools and 20% of indirect assessment tools may be taken.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Title and Number	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to Drone Technology	CO-1	08	03	02	03
Unit-2.0. Drone and its component	CO-2	20	05	07	08
Unit-3.0. Drone controller and motion	CO-3	20	05	07	08
Unit-4.0. Connections and Interfaces of Devices in Drone and Drone Simulator	CO-4	08	03	02	03
Unit-5.0. Introduction to Python for Drone	CO-5	14	04	04	06
Total Marks		70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

S.No	Laboratory Practical Titles	Relevant COs Number(s)	PLA #/ELA # (Marks)		
			Performance		Viva- Voce (...%)
			PRA (...%)	PDA (...%)	
1.	Determine the strength of materials used in drones frame.	CO-2	60	30	10
2.	Determine the strength of materials used in drones Propellers.	CO-2	60	30	10
3.	Test different parameters of batteries used in drones	CO-2	50	40	10
4.	Test motors suitable for specific Drone application.	CO-2	50	40	10
5.	Test and measure Gyro sensor and Accelerometer and their characteristics.	CO-2	50	40	10
6.	Test different sensors and their characteristics with Microcontroller based Flight controller board.	CO-2, CO-3	50	40	10
7.	Determine thrust/torque of motor by changing different drone motion	CO-2, CO-3	60	30	10

S.No	Laboratory Practical Titles	Relevant COs Number(s)	PLA #/ELA # (Marks)		
			Performance		Viva-Voce (...%)
			PRA (...%)	PDA (...%)	
8.	Test and troubleshoot Flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of Flight control board (FCB) with sensor	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with motor.	CO-3, CO-2	60	30	10
11.	Test and perform communication of Flight control board with ESC.	CO-3	60	30	10
12.	Test and perform communication of Flight control board with RF transceiver.	CO-3	60	30	10
13.	Test Hardware assembly for drone.	CO-4 CO-3	50	40	10
14.	Perform different motion in drone simulator.	CO-4	50	40	10
15.	Build and run loops and decision statements for specific application in Python.	CO-5	50	40	10
16.	Build and Run functions for specific application and pass arguments in Python.	CO-5	50	40	10
17.	Write basic programming in python to interface different component of Drones.	CO-5, CO-3	50	40	10

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Instructional/Implementation Strategies: Different Instructional/Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology(ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Drone Frame	Tricopter/Quadcopter/Hexacopter	1-13
2.	Propellers	10X4.5 CW/Others	1-13
3.	Speed Sensor	3.3 or 5.0Vdc	1-13
4.	Distance Sensor	5Volt operating voltage	1-13
5.	Gyro sensor and Accelerometer	5Volt operating voltage	1-13
6.	Barometer	Altitude tracking, temp range from 25°C to 40°C	1-13

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
7.	TOF Sensor	Accurate ranging up to 4 m, Fast ranging frequency up to 50	1-13
8.	Battery	Lithium Polymer Battery,2200mAH/others	1-13
9.	Motor	BLDC,1000kv or 1000RPM/volt	1-13
10.	Electronic speed Controller (ESC)	30 Amp,2-4s or cell	1-13
11.	Flight Controller Unit	KK 2.1.5/ ArdupilotAPM 2.8/ Pixhawk/others	1-13
12.	Transmitter and Receiver for radio signal	4 channels/6 Channels, 2.4 GHz & 5.8 GHz	1-13
13.	Drone Simulator Software	RC flight simulator	14
14.	Python Software	Hardware required-More than 4 GB RAM, 64 bit CPU preferable	15,16,17

R) Suggested Learning Resources:

(a) Suggested Books :

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby&Belinda Kilby	Shroff/Maker Media, First edition 2016, ISBN-978-9352133147
2.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018, ISBN-978-1771885959
3.	DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors Of Make	Shroff/Maker Media; First edition 2016, ISBN-978-9352133994
4.	Building Multicopter Video Drones: Build and fly multicopter drones to gather breathtaking video footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014,ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383

(b) Suggested Open Educational Resources (OER):

1. <https://nptel.ac.in/courses/101104073>
2. https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
3. <https://www.scienceabc.com/innovation/what-is-drone-technology.html>
4. <https://www.dronezon.com/learn-about-drones-quadcopters/what-is-drone-technology-or-how-does-drone-technology-work/>
5. <https://www.youtube.com/watch?v=OWaXIK9sHeE>
6. https://books.google.co.in/books?id=2M0hEAAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false

Note: Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

1. Learning Packages
2. Users' Guide
3. Manufacturers' Manual
4. Lab Manuals

S) Course Curriculum Development Team(NITTTR)

- Dr. K. K. Jain (Coordinator)
- Dr. Sanjeet Kumar (Co-coordinator)

A) Course Code : **2000505E / 2000508E / 2000511E**
B) Course Title : 3D Printing and Design (Basics)
C) Pre- requisite Course(s) : Computer aided Modeling
D) Rationale :

Additive manufacturing (AM) or Additive layer manufacturing (ALM) is the industrial production name for 3D Printing. 3D Printing is a process that makes solid objects from a digital model. It involves depositing material either metal, powdered plastic, or liquid in thin layers (2D) to get a 3D object. This basic course on 3D Printing tries to develop understanding of the process of making real object from digital model in the students. It also covers the software/hardware required, various materials used for 3D Printing and details about printing process parameters. The knowledge gained through this course will help the students to take up advanced course on 3D Printing in next semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1** Develop CAD models for 3D Printing.
- CO-2** Import and Export CAD data in .STL file format to generate GCODE file.
- CO-3** Select suitable 3D Printing material for given applications.
- CO-4** Select suitable 3D Printing process for given situations.
- CO-5** Produce products using most popular FDM/SLA/SLS 3D Printing processes.

F) Course Articulation Matrix:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs) (if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1	3	-	3	2	-	-	2			
CO-2	3	2	-	2	-	-	-			
CO-3	3	3	-	2	3	-	-			
CO-4	3	3	-	2	-	-	-			
CO-5	3	-	3	3	-	3	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

CourseCode	Course Title	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (SW+ SL)	Total Hours (CI+LI+SW+SL)	Total Credits(C)
		L	T				
2000505E / 2000508E / 2000511E	3D Printing and Design (Basics)	02	-	04	02	08	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI : Laboratory Instruction (Includes experiments/practical performances in laboratory, workshop, field or other locations using different instructional/implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work/Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, open educational resources (OERs)

C: Credits = $(1 \times \text{CI hours}) + (0.5 \times \text{LI hours}) + (0.5 \times \text{Notional hours})$

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA+LA)	
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)			
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
2000505E / 2000508E / 2000511E	3D Printing and Design (Basics)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/Term work & Self Learning Assessment (Includes assessment related to student performance in self learning, assignments, Seminars, micro projects, industrial visits, any other student activities etc.)

Note: Separate passing is must for progressive and end semester assessment for both theory and practical.

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: [2000505E]

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p><i>TSO 1a.</i> Explain CAD-CAM and related terminologies.</p> <p><i>TSO 1b.</i> Convert the given CAD file format into others.</p> <p><i>TSO 1c.</i> Transfer the given CAD data to CAM facilities.</p> <p><i>TSO 1d.</i> Classify 3D Printing processes.</p> <p><i>TSO 1e.</i> List the advantages of additive manufacturing processes over</p>	<p>Unit-1.0 Additive Manufacturing Introduction and CAD</p> <p>CAD-CAM and its integration</p> <p>CAD- Part and Surface modeling</p> <p>CAD file formats</p> <p>Additive v/s Conventional Manufacturing processes</p> <p>Process chain for 3D Printing</p> <p>Classification of 3D Printing Processes</p> <p>Product design and prototyping</p>	CO1

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>conventional manufacturing processes.</p> <p><i>TSO 1f.</i> List typical steps involved in 3D printing of an object from digital model.</p> <p><i>TSO 1g.</i> Explain reverse engineering steps for 3D Printing.</p>	1.8 Reverse Engineering for 3D Printing	
<p><i>TSO 2a.</i> Explain the given STL interface terminology.</p> <p><i>TSO 2b.</i> Use the given alternative 3D printing interface.</p> <p><i>TSO 2c.</i> Generate STL file for the given CAD file.</p> <p><i>TSO 2d.</i> Repair the given STL file.</p> <p><i>TSO 2e.</i> Apply part orientation and support techniques for the given situation.</p> <p><i>TSO 2f.</i> Perform slicing of the given CAD model using the given slicing software.</p> <p><i>TSO 2g.</i> Generate tool path using simulation software for the given situation.</p>	<p>Unit-2.0 Data Preparation for 3D Printing</p> <p>STL interface Specification, STL data generation, STL data Manipulation, Advantages and limitations of STL file format, Open files, Repair of STL files, Alternative 3D Printing interfaces</p> <p>Part orientation and support generation, Factors affecting part orientation, Various models for part orientation determination,</p> <p>The function of part supports, Support structure design, Automatic support structure generation</p> <p>Model Slicing and Contour Data organization, Direct and adaptive slicing:Identification of peak features, Adaptive layer thickness determination</p> <p>Tool path generation</p>	CO1, CO2
<p><i>TSO 3a.</i> Explain the given 3D Printing processes.</p> <p><i>TSO 3b.</i> List process parameters of the given 3D Printing processes.</p> <p><i>TSO 3c.</i> Select 3D Printing materials for the given application.</p> <p><i>TSO 3d.</i> Select 3D Printing processes among FDM, SLS, SLA for given application with justification.</p>	<p>Unit-3.0 Additive Manufacturing Techniques</p> <p>Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology, Direct Energy Deposition</p> <p>Process parameter, Process Selection for various applications</p> <p>3D Printing materials and selection</p> <p>Comparison between FDM, SLS, SLA</p>	CO3, CO4
<p><i>TSO 4a.</i> Identify various Aerospace, Electronics, Health care, Automotive, Construction, Food processing, Machine tool components that can be 3D Printed.</p> <p><i>TSO 4b.</i> Estimate the cost and time of 3D printing of the given component.</p>	<p>Unit-4.0 Application of 3D Printing</p> <p>4.1 Additive Manufacturing Application Domains: Aerospace, Electronics, Health Care, Defense, Automotive, Construction, Food Processing, Machine Tools</p>	CO3, CO4
<p><i>TSO 5a.</i> Select suitable 3D Printer and software for the given application with justification.</p> <p><i>TSO 5b.</i> Analyze the effect of given 3D printing process parameters using 3D printer software simulation.</p> <p><i>TSO 5c.</i> List steps to perform 3D scanning of the given object.</p>	<p>Unit-5.0 3D Printers and Software and Scanners</p> <p>Construction details and working of established 3D printers for plastics parts only:</p> <p>Stereolithography (SLA), Selective Laser Sintering (SLS), and Fused Deposition Modeling (FDM).</p> <p>Accuracy, Precision and Tolerance in 3D printing.</p> <p>3D Printer software- Fusion 360,</p>	CO4, CO5

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<i>TSO 5d.</i> Repair 3D scanned digital model. <i>TSO 5e.</i> Set different 3D printing process parameters to get a sound plastic component.	Solidworks, Onshape, Tinkercad, Ultimaker Cura, MeshLab, Simplyfy 3D, Repetier host, Slic3r, etc. – use and operation of anyone. 3D Scanners and working. Producing a part using FDM, SLA and SLS 3D Printer	

Note: One major TSO may require more than one Theory session/Period.

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508E]

Practical/Lab Session Outcomes(LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<i>LSO 1.1.</i> Use CAD software. <i>LSO 1.2.</i> Prepare digital models of simple 3D entities.	1.	Develop digital models of following simple components using any CAD software: <ul style="list-style-type: none"> • Nut • Bolt • Network cable Jack • Coat button • Spoon 	CO1
<i>LSO 2.1.</i> Prepare digital models of complex 3D entities and assemblies.	2.	Develop digital models of following assemblies using any CAD software: <ul style="list-style-type: none"> • Connecting Rod • Piston • Electric switch • Bathroom Tap • Mouse 	CO1
<i>LSO 3.1.</i> Surf web for downloading readymade free CAD models. <i>LSO 3.2.</i> Convert one CAD file format into another.	3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/obj format.	CO1
<i>LSO 4.1.</i> Use the given Slicing software for 3D Printing. <i>LSO 4.2.</i> Perform slicing operation on the given digital model.	4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2
<i>LSO 5.1.</i> Use the available 3D printing software. <i>LSO 5.2.</i> Selection of 3D printing process and performance parameters.	5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5
<i>LSO 6.1.</i> Produce single plastic components using available 3D printer. <i>LSO 6.2.</i> Perform post processing operations on printed component.	6.	Print one single component on available 3D printer with PLA/ABS material	CO3, CO4, CO5
<i>LSO 7.1.</i> Select appropriate layer thickness, tolerance, fit. <i>LSO 7.2.</i> Produce an assembly of plastic	7.	Print one assembly on available 3D printer with PLA/ABS material	CO3, CO4, CO5

Practical/Lab Session Outcomes(LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
components using available 3D printer.			
<i>LSO 8.1.</i> Choose suitable material for printing flexible structure (assembly of same small pieces to give flexible fabric effect). <i>LSO 8.2.</i> Choose suitable design/shape to create a flexible type structure. <i>LSO 8.3.</i> Produce flexible plastic structure using available 3D printer.	8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5
<i>LSO 9.1.</i> Selection of 3D printing process parameters.	9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5
<i>LSO 10.1.</i> Use of available 3D scanner. <i>LSO 10.2.</i> Develop 3D digital model using scanning approach. <i>LSO 10.3.</i> Modeling of complex 3D objects using 3D scanning.	10.	Scan the given complex component using available 3D Scanner.	CO5
<i>LSO 11.1.</i> Produce a complex plastic structure using available 3D printer and scanner. <i>LSO 11.2.</i> Apply Reverse Engineering approach to exactly 3D print an existing real object.	11.	Print the 3D scanned digital model of Pr. No. 10 on available 3D printer with PLA/ABS material	CO5

L) Sessional Work/Term Work and Self Learning: [2000511E]

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Perform 3D printing of plastic casing of inhaler used by Asthma patients and estimate the cost.
2. Download 5 videos on 3D printing of different components, watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
3. Print two pieces of same components using ABS and PLA and compare their strength, surface roughness, weight, cost.
4. Download two 3D printing free software and try to check their compatibility with your lab printer.

c. Other Activities:

1. Seminar Topics:
 - Commercially available 3D printers and software.
 - Strength of 3D printed Plastic components as compared to Die cast Plastic components.
 - Properties of PLA and ABS 3D printing materials.
 - Reverse engineering application of 3D Printing.
2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.

3. Self learning topics:

- 3D printing of flexible plastic components.
- 3D printing of micro/mini components.
- Conversion of CAD file formats into IGES.
- 3D scanning process.

M) Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Sessional Work Assessment (SWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Sessional Work & Self Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignments	Micro Projects	Other Activities*		
CO-1	15%	10%	15%	-	-	20%	20%
CO-2	10%	20%	10%	25%	-	10%	20%
CO-3	15%	20%	15%	25%	33%	15%	20%
CO-4	30%	20%	30%	25%	33%	15%	20%
CO-5	30%	30%	30%	25%	34%	40%	20%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

* : Other Activities include self learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point-(O)

Note: For CO attainment calculation Indirect assessment tools like Course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Title and Number	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Additive Manufacturing Introduction and CAD	CO1	12	4	3	5
Unit-2.0 Data Preparation for 3D Printing	CO1, CO2	10	4	2	4
Unit-3.0 Additive Manufacturing Techniques	CO3, CO4	19	5	5	9
Unit-4.0 Application of 3D Printing	CO3, CO4	10	2	3	5
Unit-5.0 3D Printers and Software and Scanners	CO4, CO5	19	5	5	9
Total Marks		70	20	18	32

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance	Viva-Voce (%)	
PRA (%)	PDA (%)				
1.	Develop digital models of following simple components using any CAD software: <ul style="list-style-type: none">• Nut• Bolt• Network cable Jack• Coat button• Spoon	CO1	30	60	10
2.	Develop digital models of following assemblies using any CAD software: <ul style="list-style-type: none">• Connecting Rod• Piston• Electric switch• Bathroom Tap• Mouse	CO1	40	50	10
3.	Download three digital CAD models freely available on web in different formats and then convert them into .stl/.obj format.	CO1	30	60	10
4.	Perform slicing operation on one digital model available under each Pr. No.1, 2 and 3.	CO2	30	60	10
5.	Analyse the effect of different process parameters, materials on printing time, material required, surface finish, etc. through simulation using 3D printing software on sliced models available from Pr. No. 4	CO3, CO4, CO5	30	60	10
6.	Print one single component on available 3D printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
7.	Print one assembly on available 3D printer with PLA/ABS material	CO3, CO4, CO5	30	60	10
8.	Model and print a flexible fabric structure with PLA/ABS material (assembly of same small pieces to give flexible fabric effect)	CO3, CO4, CO5	40	50	10
9.	Change printing process parameters and repeat experiment number 6.	CO4, CO5	40	50	10
10.	Scan the given complex component using available 3D Scanner.	CO5	40	50	10
11.	Print the 3D scanned digital model of Pr. No. 10 on available 3D printer with PLA/ABS material	CO5	30	60	10

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10	All
2.	Parametric Computer Aided Design software	CATIA/Solid works/NX/Creo OR Available with CoE	1,2
3.	3D printer	Fused Deposition Modelling system with complete accessories; Build Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 – 0.4 OR Available with CoE	6, 7, 8, 10
4.	3D Printing Material	ABS/PLA OR Available with CoE	6, 7, 8, 10
5.	3D Printing software	Latest version of software like: Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab OR Available with CoE	3,4
6.	Post processing equipments and tools	Deburring tools (tool handle & deburring blades), Electronic Digital Caliper, Cleaning Needles, Art knife set, Long nose pliers, Flush cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print removal spatula, Needle file, Cutting mat, Glue stick, Wire stripper etc.	6, 7, 8, 10
7.	3D Scanner and Processing software	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2 mm, Real time onscreen 3D model projection and processing, Wireless technology with an inbuilt touch screen and battery, Extended field of view for capturing both large and small objects, Processing Software OR Available with CoE	10

R) Suggested Learning Resources:

(a) Suggested Books :

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing	Lan Gibson, David W. Rosen, Brent Stucker	Springer, 2010 ISBN: 9781493921133
2.	Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing	Andreas Gebhardt,	Hanser Publisher, 2011 ISBN: 156990507X, 9781569905074

3.	3D Printing and Design	Sabrie Solomon	Khanna Publishing House, Delhi ISBN: 9789386173768
4.	3D Printing and Rapid Prototyping- Principles and Applications	C.K. Chua, Kah Fai Leong	World Scientific, 2017 ISBN: 9789813146754
5.	Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution	Liza Wallach Kloski, Nick Kloski	Make Community, LLC; 2nd edition, 2021 ISBN: 9781680450200
6.	Laser-Induced Materials and Processes for Rapid Prototyping	L. Lu, J. Fuh, Y.S. Wong	Kulwer Academic Press, 2001 ISBN: 9781461514695

(b) Suggested Open Educational Resources (OER):

1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
2. <https://archive.nptel.ac.in/courses/112/104/112104265/>
3. <https://www.youtube.com/watch?v=b2Od4YHcLAQ>
4. <https://www.youtube.com/watch?v=EF8CNR-gcXo>
5. https://www.academia.edu/41439870/Education_Resources_for_3D_Printing
6. <https://www.think3d.in/landing-pages/beginners-guide-to-3d-printing.pdf>
7. <https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/>

Note: Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

1. 3D Printing Projects DK Children; Illustrated edition, 2017
2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
3. 3D Printer Users' Guide
4. 3D Printer Material Handbook
5. Lab Manuals

S) Course Curriculum Development Team(NITTTR)

- Dr. Sharad Pradhan(Coordinator)
- Dr. A. K. Sarathe(Co-coordinator)

A) **Course Code** : 2000505 F / 2000508 F /2000511F

B) **Course Title** : Industrial Automation (Basic)

C) **Pre- requisite Course(s)** : Basic Mechanical Engineering, Basic Electrical Engineering, Digital Electronics and Basic programming skills

D) **Rationale** :

The technological education and research scenario, all over the world, is turning towards a multidisciplinary one. The present scenario is different as compared to the recent past in the sense that the engineering disciplines are now dilating instead of diverging. The primary reason being that the current technological designs are of highly complex and inter-interdisciplinary nature involving synergistic integration of many aspects of engineering knowledge base. Industrial automation has become an essential part of every modern industry. Automation helps industry to increase the productivity, quality, accuracy and precision of industrial processes. Stiff competition, higher quality standards and growing concerns of safety & environmental damage have pushed the Industrial sector to adapt state-of-the-art Automation Techniques for effective utilization of resources and optimized performance of the plants. Today engineer is needed to meet the requirements of designing appropriate automation systems. They should have the knowledge of different fields like PLC and PID based Controller, Instrumentation, Networking, Industrial Drives, SCADA/HMI, High speed data acquisition, etc., to become a successful automation engineer. The discipline Automation is enormous in magnitude. The students passing this course will gain basic understanding about industrial automation and will be prepared to take up the advance course in Industrial automation in next semester.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

- CO-1** Apply principles and strategies for automation for a given situation.
- CO-2** Use sensors and input devices as per given situation.
- CO-3** Test the given PLC for its functionality.
- CO-4** Use actuators and output devices as per given situation.
- CO-5** Test the working of various types of control system and controllers

F) Suggested Course Articulation Matrix:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs) (if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1 Apply principles and strategies for automation for a given situation	3	2	-	2	2	-	2			
CO-2 Use sensors and input devices as per	3	2		2			2			

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs) (if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
the requirement.			2		-		-			
CO-3 Test the given PLC for its functionality.	3	2	2	2	2	-	2			
CO-4 Use actuators and output devices a per given situation.	3	2	2	2	2	-	2			
CO-5 Test the functionality of various types of control system and controllers	3	2	2	2	-	-	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

CourseCode	Course Title	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (SW+SL)	Total Hours (CI+LI+SW+SL)	Total Credits(C) (CI+LI+SW+SL)
		L	T				
2000505 F / 2000508 F / 2000511F	Industrial Automation (Basic)	02	-	04	02	08	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances in laboratory, workshop, field or other locations using different instructional/implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, open educational resources (OERs)

C: Credits.

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA+LA)
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)		
Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment(PL)	End Laboratory Assessment (ELA)			
2000505F / 2000508F /2000511F	Industrial Automation (Basics)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/ Term work& Self Learning Assessment (Includes assessment related to student performance in selflearning, assignments, Seminars, micro projects, industrial visits, any other student activities etc.

Note: Separate passing is must for progressive and end semester assessment for both theory and practical.

Theory: 100 marks

Practical 50 marks

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes(LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others need to be integrated.

J) **Theory Session Outcomes (TSOs) and Units: [2000505 F]**

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO.1.a Describe Industry 4.0 and its component</p> <p>TSO.1.b Explain different types of automation systems</p> <p>TSO.1.c Identify the type of automation used in a given industry</p> <p>TSO.1.d Analyze the working of industrial processes and products for automation.</p> <p>TSO.1.e Select principles and strategies for automation for a given situation using 4R's and 1U</p> <p>TSO.1.f Select criteria for factory automation and processes automation for a given industry.</p> <p>TSO.1.g Describe briefly different systems used for industrial automation.</p> <p>TSO.1.h Describe IOT, IIOT and role of robots with respect to automation.</p>	<p>Unit-1.0 Overview of Industrial Automation</p> <p>Introduction to Industry 4.0 and its components, Issues and challenges in automation</p> <p>Need of automation in industries, Principles and strategies of automation, factory automation, process automation</p> <p>Basic elements of an automated system, Structure of Industrial Automation Advanced automation functions, Levels of automations</p> <p>Industrial control Systems- Process and Discrete system</p> <p>Types of automation system: Fixed, Programmable, Flexible Integrated Automation and its application</p> <p>Different systems used for Industrial automation: PLC, HMI, SCADA, DCS, Drives.</p> <p>Introduction to Internet of Things (IoT) and Industrial Internet of Things (IIOT) and its application in Automation.</p> <p>Role of robots in automation and its components.</p>	CO1 Apply principles and strategies for automation for a given situation.
<p>TSO.2.a Explain PLC and list its advantages over relay systems.</p> <p>TSO.2.b Distinguish between PLC and a PC, PLC and dedicated controllers.</p> <p>TSO.2.c List the types of PLCs and brands available in the market.</p> <p>TSO.2.d Describe the function of each block of a PLC with the help of a block diagram.</p> <p>TSO.2.e Describe the basic sequence of operation of a PLC with a simple example.</p> <p>TSO.2.f Explain different PLC programming languages with simple examples.</p> <p>TSO.2.g Describe a simple PLC programming using ladder logic specifying I/O addressing</p> <p>TSO.2.h List the applications of PLC</p>	<p>Unit-2.0 Fundamentals of PLC</p> <p>Introduction to PLC, evolution of PLC</p> <ul style="list-style-type: none"> Comparison of PLC and Personal Computer (PC) Comparison of PLC and dedicated controllers like PAC and CNC Types of PLC – Fixed, Modular and their types Different brands of PLCs available in the market <p>Building blocks of PLC -CPU, Memory organization, Input-Output modules (Discrete and Analog)</p> <p>Specialty I/O Modules, Power supply</p> <p>PLC programming languages with simple examples: <ul style="list-style-type: none"> Functional Block Diagram (FBD), Instruction List, Structured text, Sequential Function Chart (SFC), Ladder Programming </p> <p>PLC I/O addressing in ladder logic</p> <p>Simple programming example using ladder logic</p> <p>Applications of PLC:</p> <p>Traffic light control, Elevator control, Motor sequencing control, Tank level control, temperature control, Conveyor system</p>	CO2 Use sensors and input devices as per given situation.

Major Theory Session Outcomes (TSOs)	Unit s	Relevant COs Number(s)
	control	
TSO.3.a Identify the commonly used input field devices in PLC installations along with their symbols.	Unit 3 – Sensors and Input field devices Analog input devices-Electromagnetic relays, Contactors, Motor starters, Manually operated Switches	CO 3 Test the given PLC for its functionality
TSO.3.b Draw symbol of various switches used in PLC installations describing the function of each switch.	Toggle switch, pushbutton switch, knife switch and selector switches Mechanically operated switches, Limit switch, Temperature switch (Thermostat), Pressure switch, Level switch and their symbols	
TSO.3.c Identify the various digital input devices used in a PLC installation.	Discrete/Digital Input device, Construction and working of Sensors	
TSO.3.d Identify the commonly used sensors as input field devices found in PLC installations.	<ul style="list-style-type: none"> Proximity sensors- Inductive, Capacitive, Optical and ultrasonic Advanced sensors- Construction and working of	
TSO.3.e Describe the working of different types of discrete sensors giving their applications.	<ul style="list-style-type: none"> Temperature sensors- Thermistor, Thermocouple and Resistance temperature Detector (RTD) 	
TSO.3.f Describe the working of different types of advanced sensors giving their applications.	<ul style="list-style-type: none"> Liquid level sensor -Capacitive and Ultrasonic Force -Strain/Weight sensors Flow sensors – turbine flow sensor Pressure sensors- Linear Variable Differential Transformer (LVDT) Inclination sensor -Inclinometer Acceleration sensor- Accelerometer Angular and linear position sensor 	
TSO.3.g Select Sensors as per the given requirement for ecofriendly automation		
TSO.4.a Classify the actuators.	Unit 4- Actuators and output devices	CO 4
TSO.4.b Describe the construction and working of a given actuator.	Introduction to actuators, Classification of actuators	
TSO.4.c Explain the basic principle of operation of a given actuator.	Mechanical actuators -Translational and rotational motion, kinematic chains, cams, gears, belt and chain drives, bearings	
TSO.4.d Differentiate between hydraulic and pneumatic actuators		
TSO.4.e Explain the basic principle of operation of a given control valve.	Hydraulic and Pneumatic actuators- linear and rotary actuators, single and double acting cylinder, directional, process and pressure control valves	
TSO.4.f Select actuators and valves as per the given requirement for ecofriendly automation.	Electrical actuators	
TSO.4.g Develop different hydraulic and pneumatic circuits for simple application.	<ul style="list-style-type: none"> Electromechanical actuators- Construction, working and application of Stepper motors, AC/DC Servo motors, BLDC Motor (Very brief) 	
TSO.4.h Identify the commonly used output field devices in PLC installations	<ul style="list-style-type: none"> Electrohydraulic actuators- Construction, working and application of Electro-hydrostatic actuator (EHA), ON/OFF Electro-hydraulic Rotary Actuator (E2H90, Control Valve Rotary Actuator (E2HR), Solenoid valve 	
TSO.4.i Draw the symbol of various output devices used in PLC installations describing the function of each.	Thermal actuators -Construction, working and application of Hot-And-Cold-Arm Actuators, Chevron-Type Actuators	
TSO.4.j Select output devices for a PLC installation as per the		

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	<p>4.6 Magnetic actuators- Construction, working principle and application of Moving coil actuators, moving magnet actuator, Moving iron actuator</p> <p>Selection criteria of actuators</p> <p>Other Output devices- Indicators, Alarms Pilot Lights, Buzzers, Valves, Motor starters, Horns and alarms, Stack lights Control relays, Pumps and Fans.</p>	
<p>TSO.5.a Describe the basic process control system with the help of a block diagram</p> <p>TSO.5.b Explain the types of control available in a process control</p> <p>TSO.5.c Describe the different types of controllers in a closed loop system with the help of a block diagram</p> <p>TSO.5.d Describe the construction, working and application of a given control system components.</p>	<p>Unit 5– Control system</p> <p>Block diagram of a basic control system</p> <p>Open and closed loop system, their transfer function</p> <p>First order and second order system and their output response and parameters</p> <p>Different types of inputs-step and ramp</p> <p>Types of control – On-off, Feed forward, Open loop and closed loop control and Transfer function</p> <p>Controllers in closed loop control</p> <ul style="list-style-type: none"> • Proportional Controller(P Controller) • Integral Controller (I Controller) • Derivative controller (D- Controller) • P-I Controller • P-D Controller • PID Controller 	<p>CO5</p> <p>Test the working of various types of control system and controllers</p>

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508 F]

Practical/Lab Session Outcomes (LSOs)	S.No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1 Identify various building blocks and major automation components in a given robotic system	1.	Identify major automation components in a given system	CO1
LSOs 1.2 Identify various building blocks and major automation components in a given electrical drives			
LSOs 1.3 Analyze and plan the steps to automate the given system.	2.	Analyze given traditional machine in the laboratory for and identify the steps and components required to automate it.	
LSO 1.4. Identify the building blocks of a given typical SCADA system	3.	Use Scada software for simple application	
LSO 1.5. Identify the symbol library of SCADA software			
LSOs 2.1 Identify the various parts and front panel status indicators of the given PLC.	4.	Observe various parts and front panel indicators of a PLC	CO2

LSOs 2.2 Identify different input and output devices that can be connected to a given PLC.	5.	Observe different types of switches and their symbols sensors, lamp, alarm, motor, fan used in a PLC	
LSOs 2.3 Test the analog input and output lines of the given PLC.	6.	Identify Analog input and output lines of a PLC	
LSOs 2.4 Test the digital input and outlines of the given PLC.	7.	Identify digital input and output lines of a PLC	
LSOs 2.5 Use PLC to control the devices like Lamp, Alarm, motor using push button switches	8.	Practice using PLC to control various digital and analog output devices	
LSO 3.1. Test the response of digital inductive proximity sensor used to detect different types of materials	9.	Identify different types of digital inductive proximity sensor and its use	co3
LSO 3.2. Test the response of digital capacitive proximity sensors used to detect different materials	10.	Identify different types of digital capacitive proximity sensor and its use	
LSO 3.3. Test the response of digital optical proximity sensor used to detect different materials	11.	Identify different types of digital optical proximity sensor and its use	
LSO 3.4. Test the response of digital ultrasonic proximity sensors used to detect different materials	12.	Identify different types of digital ultrasonic proximity sensor and its use	
LSO 3.5. Use thermistor to measure temperature of a given material	13.	Identify different types of thermistor and its use	
LSO 3.6. Use Thermocouple to measure the temperature of a given liquid and plot the output voltage versus temperature	14.	Observe the conversion of temperature to electric parameter conversion of a Thermocouple	
LSO 3.7. Use RTD to control the temperature of an oven	15.	Observe different types of RTDs used in industries for temperature measurement	
LSO 3.8. Use flow sensors to measure the flow of a given liquid or gas	16.	Observe different types of flow sensors used in industries for flow measurement	
LSO 3.9. Use pressure sensors to measure the pressure of a liquid or gas	17.	Observe different types of pressure sensors used in industries for pressure measurement	
LSO 3.10. Use load cell for measurement of mechanical force/weight.	18.	Observe the different types of load cell used in industries for force/weight measurement	

LSOs 4.1 Design and actuate pneumatic circuit for lift control LSOs 4.2 Design a pneumatic system that rivets the pockets on jeans LSOs 4.3 Design pneumatic circuit to open and close the security gate and control the speed. LSOs 4.4 Design a circuit for speed control of hydraulic motor meter out circuit by using 4/3 DC valve. LSOs 4.5 Design a circuit for speed control of double acting cylinder meter in by using 4/2 dc solenoid valve. LSOs 4.6 Designing a circuit for speed control of double acting cylinder meter out by using 4/3 solenoid valve	19.	Design and actuate pneumatic/hydraulic circuit for the given situation	
LSOs 4.7 Direct acting of hydraulic motor	20.	Operate hydraulic motor	
LSOs 4.8 Operate stepper motor and control the motor by changing number of steps, the direction of rotation and speed.	21.	Operate stepper motor	
LSOs 4.9 Identify the components of thermal and magnetic actuators available in the laboratory. LSOs 4.10 Use thermal and magnetic actuators	22.	Thermal and magnetic actuators	
LSOs 5.1 Test the output response of a open loop closed loop and feed forward path	23.	Analyze the given system to study open loop, closed loop and feed forward path.	CO5
LSOs 5.2 Build and test the output response of a first order system for a step input using a CRO	24.	Analyze the given first order system and its transfer function and output response	
LSOs 5.3 Build and test the response of a second order system for a step input using CRO. Also mark various parameters	25.	Analyze the given second order system and its transfer function and output response	
LSOs 5.4 Test the Output response of an on-off and Proportional control-based level control system.	26.	Analyze the given water level control system with on-off, Proportional control.	
LSOs 5.5 Test the Output response pf a P+I+D based level control system.	27.	Analyze the given water level control system with P+I+D control.	

L) Sessional Work and Self Learning: [2000511 F]

- a. **Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
 - i. State three advantages of using programmed PLC timer over mechanical timing relay.
 - ii. Prepare a list of open source PLC software

- iii. Prepare a list of open source SCADA software.
- iv. List the practical applications of PLC systems
- v. List the practical applications of SCADA systems.
- vi. Compare the PLC and PC with regard to:
 - Physical hardware differences
 - Operating environment
 - Method of programming
 - Execution of program
- vii. Prepare classification chart of different types of actuators.
- viii. Differentiate between Nano and micro actuators.

b. Micro Projects:

1. Develop a relay-based motor control automation such that the motor reverses its direction when the limit switches are activated.
2. Develop a simulation to connect analog and digital input to the PLC.
3. Develop a simulation to connect analog and digital output to the PLC.
4. Develop a simple automatic water level controller using magnetic float switch.
5. Develop a simple automatic door system using optical sensor and linear actuator.
6. Troubleshoot the faulty equipment/kit available in automation laboratory
7. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
8. Develop a working model of a given application using given actuators and valves.

c. Other Activities:

1. Seminar Topics- PLC architecture, Different types of sensors, Industrial Applications of PLC and SCADA
2. Visits – Visit any industry with full or semi automation and prepare a report on type of automation used.
3. Surveys-Carry out a market/internet survey of PLC and prepare the comparative technical specifications of any one type of PLC (Micro or Mini) of different manufacturer.
4. Product Development- Develop a prototype automatic railway crossing system
- Software Development- Download any open source software for PLC and install on your laptop/PC and carry out basic PLC programming
5. Surveys – carry out market survey for different types of electrical actuators available and prepare the comparative technical specifications of electrical actuators used in industries.
6. Visit industry and prepare a report on different types of hydraulic and pneumatic circuits used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.

d. Self-learning topics:

1. Use of PLC for different industrial applications
2. Use of sensors in commercial field
3. Use of sensors in home automation
4. Compare Specifications of PLCs of different manufacturers of any one type PLC

(M) Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. There response/performance of the student in each of these designed activities is to be used to calculate **CO attainment**.

COs	Scheme of Assessment (Marks)								
	Theory Assessment (TA)				Lab Assessment (LA)				
	Progressive Theory Assessment (PTA) [#] Class/Mid Sem Test	End Theory Assessment (ETA) ^{**}	Sessional Work & Self Learning Assessment (SWA)		Progressive Lab Assessment (PLA)			End Laboratory Assessment (ELA) [#]	
			Assignments(s)	Micro Projects	Other Activities*	Process Assessment (PRA)	Product Assessment (PDA)		
CO-1	15 %	20%	20 %	100	10 %	45%	35 %	100%	
CO-2	20 %	20%	20 %		15 %	45%	35 %		
CO-3	25 %	20%	20 %		15 %	45%	35 %		
CO-4	25 %	20%	20 %		30 %	45%	35 %		
CO-5	15 %	20%	20 %		30 %	45%	35 %		
Total Marks	20	70	4	4	2	8	8	4	30

Legend:

* : Other Activities include seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

: Mentioned under point-(O)

Note: To calculate CO attainment 80% weightage of direct assessment tools and 20% of indirect assessment tools may be taken.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use appropriate assessment strategy and its weight age in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Title and Number	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Overview of Industrial Automation	CO1	12	4	6	4
Unit-2.0 Fundamentals of PLC	CO2	17	5	6	6
Unit-3.0 Sensors and Input field devices	CO3	16	4	6	6
Unit-4.0 Actuators and output devices	CO4	15	4	5	6
Unit- 5.0 Control system	CO5	10	3	4	4
Total Marks		70	20	27	26

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

S.NO	Laboratory Practical Titles	Relevant COs Number(s)	PLA #/ELA # (Marks)		
			Performance		Viva-Voce (10 %)
			PRA (45%)	PDA (45%)	
1.	Identify major automation components in a given system	CO1	45 %	35 %	20%
2.	Analyze given traditional machine in the laboratory for and identify the steps and components required to automate it.	CO1	45 %	35 %	20%
3.	Use Scada software for simple application	CO1	45 %	35 %	20%
4.	Observe various parts and front panel indicators of a PLC	CO2	45 %	35 %	20%
5.	Observe different types of switches and their symbols sensors, lamp, alarm, motor, fan used in a PLC	CO2	45 %	35 %	20%
6.	Identify Analog input and output lines of a PLC	CO2	45 %	35 %	20%
7.	Identify digital input and output lines of a PLC	CO2	45 %	35 %	20%
8.	Practice using PLC to control various digital and analog output devices	CO2	45 %	35 %	20%
9.	Identify different types of digital inductive proximity sensor and its use	CO3	45 %	35 %	20%
10.	Identify different types of digital capacitive proximity sensor and its use	CO3	45 %	35 %	20%
11.	Identify different types of digital optical proximity sensor and its use	CO3	45 %	35 %	20%
12.	Identify different types of digital ultrasonic proximity sensor and its use	CO3	45 %	35 %	20%
13.	Identify different types of thermistor and its use	CO3	45 %	35 %	20%
14.	19. Observe the conversion of temperature to electric parameter conversion of a Thermocouple.	CO3	45 %	35 %	20%
15.	Observe different types of RTDs used in industries for temperature measurement	CO3	45 %	35 %	20%
16.	Observe different types of flow sensors used in industries for flow measurement	CO3	45 %	35 %	20%
17.	Observe different types of pressure sensors used in industries for pressure measurement	CO3	45 %	35 %	20%
18.	Observe the different types of load cell used in industries for force/weight measurement	CO3	45 %	35 %	20%
19.	Design and actuate pneumatic/ hydraulic circuit for the given situation	CO4	45 %	35 %	20%
20.	Operate hydraulic motor	CO4	45 %	35 %	20%
21.	Operate stepper motor	CO4	45 %	35 %	20%
22.	Thermal and magnetic actuators	CO4	45 %	35 %	20%
23.	Analyze the given system to study open loop, closed loop and feed forward path.	CO5	45 %	35 %	20%
24.	Analyze the given first order system and its	CO5	45 %	35 %	20%

S.NO	Laboratory Practical Titles	Relevant COs Number(s)	PLA #/ELA # (Marks)		
			Performance		Viva-Voce (10 %)
			PRA (45%)	PDA (45%)	
	transfer function and output response				
25.	Analyze the given second order system and its transfer function and output response	CO5	45 %	35 %	20%
26.	Analyze the given water level control system with on-off, Proportional control.	CO5	45 %	35 %	20%
27.	Analyze the given water level control system with P+I+D control.	CO5	45 %	35 %	20%

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) **Instructional/Implementation Strategies:** Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and CommunicationsTechnology(ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	SCADA software (reputed make like Allen Bradley, Siemens etc.,)	Ready-to-use symbol library, React and respond in real-time, Real time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	3
2.	Universal PLC Training System with HMI (Of reputed make such as Allen Bradley, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle switches, push to ON switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	4,5,6,7,8

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
3.	Proximity sensors kit	The kit should comprise of the following proximity sensor - Inductive Proximity Sensor, Capacitive Proximity Sensor, Magnetic Sensor, Optical Sensor, Audio and LED indicator for the object detection. Along with learning material	9,10,11,12
4.	Temperature transducer kit	Temperature Transducers Test Bench includes different types of temperature sensors including bimetallic strip, RTD, thermocouple, thermistor, RTD/thermocouple temperature display and thermistor, temperature display, heater, fan, switches and its indicator. Separate heater and fan chamber with stand. On panel digital voltmeter, digital ammeter, RTD/thermocouple temperature display, NTC temperature display, toggle switch for heater and fan with indicator, experiments configurable through patch board, heavy duty Test bench, castor wheel (with locking mechanism) is provided at legs of Test bench so that it can be easily moved, enhanced electrical safety consideration.	12,13,14
5.	Pressure transducer kit	Pressure transducer kit should include different types of pressure sensors including capacitive pressure transducer, load cell, bourdon tube pressure gauge, and pressure vessel. Pressure vessel with pressure gauge, safety valve, non returning valve bourdon gauge and capacitive transducer and air compressor, on panel digital voltmeter, digital ammeter, 4-20ma display, 0- 10V DC display, toggle switch for compressor, load cell with suitable weight, experiments configurable through patch board, self-contained, bench-mounting arrangement, castor wheel (with locking mechanism) is provided at legs of Test bench so that it can be easily moved, enhanced electrical safety consideration. Detailed experiment manual should be supplied with the kit.	16
6.	Flow sensor kit	Turbine flow sensor kit	15
7.	Strain Gauge kit	The kit should provide study of Strain Gauge and their application for measurement of Strain. It should help to study bridge configuration of Strain Gauge and the signal conditioning circuits required to measure strain. It should use cantilever beam arrangement to produce strain on Strain Gauge. The Strain Gauges are firmly cemented to the cantilever at the point where the strain is to be measured. Weights are placed on free end of cantilever. Strain developed changes the resistance of Strain Gauge which is detected by full bridge configuration. It should comprise of Seven-segment LED display showing strain in micro strain units. Different weights should be provided to perform linearity and sensitivity experiments. Detailed experiment manual should be supplied with the kit. Test-points to observe input output of each block, onboard gain and offset null adjustment, built in DC Power Supplies, 3½ digits LED display, onboard Cantilever arrangement, high repeatability and reliability The kit should be capable of performing following experiments: <ul style="list-style-type: none">• Measuring strain using strain gauges and cantilever assembly.• Determination of linear range of operation of strain measurement.• Determination sensitivity of the kit	17
8.	Cut sections of pumps, actuators, valves and	Suitably cut and mounted on a sturdy base to show the internal details.	18

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
	accessories used in hydraulic systems		
9.	Working models of pumps, actuators, valves and accessories used in hydraulic systems	Working models mounted on sturdy base to demonstrate the operation.	18
10.	Working models of pumps, actuators, valves and accessories used in pneumatic systems	Working models mounted on sturdy base to demonstrate the operation.	18
11. 8	Oil Hydraulic trainer	<p>Mounted on sturdy base fitted with all standard units and accessories to create various hydraulic circuits.</p> <p>Hydraulic trainer with simulation software</p> <p>Pneumatic trainer with simulation software</p> <ul style="list-style-type: none"> • Filter Regulator Combination with Lubricator (FRL Unit) with pressure gauge , Junction Box with slide valve, Push Button Valve , 3/2 NC Roller lever valve ,3/2 NC Roller lever valve ,5/2 Double external pilot operated valve, 5/2 External pilot operated valve with spring return , 5/2 Hand lever with spring return, 5/2 Hand lever valve with detent – for maintained pilot operation of a SAC , 5/2 Valve with Lever head, 5/2 Value with Mushroom head , Flow control valve – Metering IN & OUT , Shuttle Valve (OR valve) , Quick Exhaust Valve with Quick coupler plug • Double Acting Cylinder (DAC) with Quick coupler socket (with accessories: Screw driver – for cushioning adjustment),Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug, Multi distributor fittings (for cascading circuit designing) • Single Solenoid Valve with Spring Return (with LED), Double Solenoid Valve (with LED), Magnetic Reed Switch, Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit, Timer 	18
12.	Pneumatic Trainer	<p>Mounted on sturdy base fitted with all standard units and accessories to create various Pneumatic circuits.</p> <p>Pneumatic trainer with simulation software</p> <ul style="list-style-type: none"> • Filter Regulator Combination with Lubricator (FRL Unit) with pressure gauge, Junction Box with slide valve • Push Button Valve, 3/2 NC Roller lever valve, 3/2 NC Roller lever valve, 5/2 Double external pilot operated valve (Memoryvalve) • 5/2 External pilot operated valve with spring return, 5/2 Hand lever with spring return, 5/2 Hand lever valve with detent, 5/2 Valve with Lever head ,5/2 Value with Mushroom head , Flow control valve, Shuttle Valve (OR valve), AND valve • Quick Exhaust Valve with Quick coupler plug, Double Acting Cylinder (DAC) with Quick coupler socket, Single Acting Cylinder (SAC), Swivel fitting assembly with Quick coupler plug • Aluminum Profile Table Top, Profile Table Top, Miniature Double Acting Cylinder (DAC), Single Solenoid Valve with Spring Return, Double Solenoid Valve (with LED) • Magnetic Reed Switch, Relay Logic Unit – 2C/0-3 relays, Electrical Push Button Unit, Electrical Selector Switch Unit (Black Selector – 1 no, Green Push Button – 1 no), Timer, Simulation software 	18

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
13.	Advanced Electro - Hydraulic and Electro - Pneumatic Hardware systems with work stations and simulation software	<ul style="list-style-type: none"> Electro - Hydraulic and Electro - Pneumatic Hardware systems with PLC and simulation software Profile plate, Frame with Castor Wheels, Filter, Lubricator, Regulator with pressure gauge, Hand Slide Valve, Connection component set, Plastic Tubing, Power Supply & cables, Pressure Gauge, 3/2 Way double solenoid valve 	18
14.	Output devices	Servomotor, DC motor, AC motor, stepper motor, Conveyer Belt control by PLC, water level control etc.	18,19,20
15.	Thermal actuators	Hot-And-Cold-Arm Actuators, Chevron-Type Actuators	21
16.	Magnetic actuators	Moving Coil Controllable Actuators, Moving Iron Controllable Actuator	21
17.	Open and closed loop control system kit	Open and closed loop system kit should be able to measure the output response using CRO	22
18.	First and second order control system	First and second order system with input and output terminals provision	23,24
19.	Process control system with feed forward path kit	Process control system with feed forward path kit with input and output terminals provision	22
20.	PID Controller Test Bench	PID Controller Test Bench is a complete setup to control process through two-point (on/off) and three-point (PID) controllers. Industrial PID controller with RS485 communication facility, Thermocouple temperature sensor, Float switch for detection of water level, Temperature measurement and control, Userfriendly software, USB Interface, Heavy duty Test bench, Electrical control panel, Leak proof sturdy piping and tanks, SS Sump tank for inlet and outlet of water, Enhanced electricalsafety considerations, Caster wheel (with locking mechanism) at the legs of Testbench for easy movement.	25,26

R) Suggested Learning Resources:

(a) Suggested Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005, ISBN13: 9781401884260
2.	Programmable Logic Controllers	Petruzzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN: 9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN: 9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and Industrial Automation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015, ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN: 9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103, 9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978-1936007097
10.	Practical SCADA for industry,	Bailey David ; Wright Edwin	Newnes (an imprint of Elsevier), UK 2003, ISBN:0750658053

(b) Suggested Open Educational Resources (OER):

1. Process Automation Control- online Tutorial: www.pacontrol.com
2. PLC product: www.seimens.com
3. www.ab.rockwellautomation.com
4. PLC product: www.abb.co.in
5. Different product of PLC and Peripherals, Smart Tile CPU Board, All in one lighting energycontroller, Classic PLC www.triplc.com
6. Simulation software:<http://plc-training-rslogix-simulator.soft32.com/free-download/>
7. Simulator :www.plcsimulator.net/
8. https://www.youtube.com/watch?v=y2eWdLk0-Ho&list=PLIn3BHg93SQ_X5rPjqP8gLLxQnNSMHuj
9. <https://www.youtube.com/watch?v=86CrhxgAKTw>

Note: Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

1. Learning Packages
2. Users' Guide
3. Manufacturers' Manual
4. Lab Manuals

S) Course Curriculum Development Team(NITTR)

- Dr. Vandana Somkuwar(Coordinator)
- Dr. C. S. Rajeshwari(Co-coordinator)

**

A) Course Code : **2000505G / 2000508G / 2000511G**
B) Course Title : **Electric Vehicle (Basic)**
C) Prerequisite Course(s) :
D) Rationale :

Fossil fuel consumption and its adverse impact on the environment have led most nations in the world to adopt electric vehicles for mobility. Most automobile companies are switching from internal combustion engines to electric, a cleaner, and more sustainable alternative. But, in the present scenario, the automobile industries are facing a shortage of skilled technicians needed for the transition to electric drives as the primary source of motive power. There is a huge skill gap between industry and academia when it comes to the task of taking the entire automobile industry towards electric mobility. Therefore, this basic course on an electric vehicles is included in the curriculum of the diploma programme as an open elective course to fill this gap and gain a basic understanding of the importance and necessity of electric vehicles. This course tends to enable participants with multidisciplinary exposure and give them a brief idea about electric vehicles, and their importance. This course gives some basic technical foundations regarding electric vehicles to help them move on to advanced electric vehicle courses.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of the following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the student will be able to-

- CO-1** Classify the EVs based on configurations.
- CO-2** Identify relevant Motors for the given EV application.
- CO-3** Test the performance of batteries used for EV applications.
- CO-4** Distinguish between the EV Charging stations based on their Configurations.
- CO-5** Follow regulatory requirements and policies for EV Industry.

F) Course Articulation Matrix:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)(if any)		
	PO-1 Basic and Discipline-Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1 Classify the EVs based on configurations	3	2	-	2	2	-	3			
CO-2 Identify relevant Motors for the given EV application.	3	2	2	2	2	1	3			
CO-3 Test the performance of batteries used	2	2	3	3	2	2	3			

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)(if any)		
	PO-1 Basic and Discipline-Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
for EV applications										
CO-4 Distinguish between the EV Charging stations based on their configurations	2	2	1	2	2	1	2			
CO-5 Follow regulatory requirements and policies for EV Industry.	1	1	-	-	3	1	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

CourseCode	Course Title	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (SW+ SL)	Total Hours (CI+LI+SW+SL)	Total Credits(C)
		L	T				
2000505G / 2000508G / 2000511H	Electric Vehicles (Basic)	02	-	04	02	08	05

Legend:

CI: Classroom Instruction (Includes different instructional/ implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem-based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances in the laboratory, workshop, field or other locations using different instructional/implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work/Term work (includes assignments, seminars, micro-projects, industrial visits, any other student activities, etc.)

SL: Self-Learning, MOOCs, Spoken Tutorials, Open Educational Resources (OERs)

C: Credits= (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of the teacher to ensure the outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA+LA)	
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)			
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
2000505G / 2000508G / 2000511G	Electric Vehicles (Basic)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in the classroom (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/Term work& Self-Learning Assessment (Includes assessment related to student performance in self-learning, assignments, Seminars, micro-projects, industrial visits, any other student activities etc.)

Note: Separate passing is a must for progressive and end-semester assessment for both theory and practical.

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: [2000505G]

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 1a. Identify the types of the vehicle based on the physical features, specification data and information.</p> <p>TSO 1b. State the advantages of EVs over Conventional IC Engine Vehicles.</p> <p>TSO 1c. Identify different components of Electric Vehicle systems</p> <p>TSO 1d. Explain the functions of different components of the EV</p>	<p>Unit-1.0 Introduction to Electric Vehicle Review of Conventional Vehicle Engine System Electric Vehicle (EV)</p> <ul style="list-style-type: none"> • The necessity of Electric Vehicle • Types of Electric Vehicles <ul style="list-style-type: none"> - Plug-in hybrid - Battery electric vehicle - Hybrid electric vehicle - Fuel Cell Electric Vehicle • Advantages of Electric Vehicles <p>Electric Vehicle Components: Motor, Motor Controller, Battery, Battery Management System, and Charging System.</p>	CO1
<p>TSO 2a. Explain the general characteristics of motors used in EV</p> <p>TSO 2b. List different types of motors used in EV</p> <p>TSO 2c. Explain the working principles of motors used in</p>	<p>Unit-2.0 Electric Motors used in EVs Electric Motors for EV applications</p> <ul style="list-style-type: none"> • General Characteristics of motors • Types of Motors: DC, Brushless DC, 	CO2

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number(s)
TSO 2d.	EV applications Interpret the nameplate ratings of the motors for EV applications.	Induction, Permanent Magnet Synchronous Motors, Switched Reluctance Motors	
TSO 2e.	Explain the motor selection criteria for particular EV applications.	Rating of Motors Selection Criteria	
TSO 2f.	Describe the Mechanical and Electrical Connections of Motors.	Physical Location Connection of Motors: Mechanical Connections and Electrical Connections	
TSO 3a.	List the batteries used in EVs for energy storage	Unit- 3.0 EV Batteries and Energy Storages	CO3
TSO 3b.	State various parameters related to batteries used in EV applications.	Types of Batteries: Lead Acid, Nickel Based, Lithium Based Battery Parameters	
TSO 3c.	Explain the charging and discharging process of the given batteries.	Charging (AC) and Discharging(DC) Process	
TSO 3d.	Explain the salient features of Lithium Ion batteries	Lithium Ion Batteries Fuel Cells, Fuel Cell Storage System	
TSO 3e.	Explain the Fuel Cell Storage System.	Battery Condition Monitoring	
TSO 3f.	Identify various sensors installed for monitoring Battery condition.	Battery Management System (BMS) <ul style="list-style-type: none">Need of BMSBlock Diagram of BMS	
TSO 3g.	Explain Battery Management System in EV using Block Diagram.	Battery Disposal and Recycling	
TSO 3h.	Describe the procedure of battery Disposal and Recycling		
TSO 4a.	Identify different types of diodes and transistors.	Unit- 4.0 EV Charging Systems	CO4
TSO 4b.	Describe the testing procedure for the given Diode and Transistor.	Power electronics in EV <ul style="list-style-type: none">Power electronics componentsRectifiersDC to DC ConverterDC to AC Converter	
TSO 4c.	Explain the working principles of the given power electronic converter circuit.	Charging System	
TSO 4d.	Describe the types of Charging Systems	<ul style="list-style-type: none">Types of charging SystemsComponents of Charging SystemsSingle line Diagram of Charging System	
TSO 4e.	Describe different Components of the Charging System		
TSO 4f.	Explain the working of the Charging System using a single-line diagram.		
TSO 5a.	Understand the Rules and Regulations set by the Government for selecting and manufacturing various components of an electric vehicle.	Unit- 5.0 Regulatory Requirements and Policies for EV Industry	CO5
TSO 5b.	Understand the Policies for E-Vehicles.	Rules and Regulations set by the Indian government for the designer/manufacturer of EVs.	
TSO 5c.	Appreciate the importance of the reduction of greenhouse gases in the environment.	Policies in India Global Policies for E- Vehicles. Carbon Footprint Issues	

Note: One major TSO may require more than one Theory session/Period.

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508G]

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 2.1	Use the relevant digital meter for the given application.	1.	<ul style="list-style-type: none">Practice using digital meters such as AC, DC Clamp Meters, Digital Multimeters, Lux Meters, etc.Practice using Screw Driver Kit, Vernier	CO1
LSO 2.2	Use a measuring instrument for the given application.			
LSO 2.3	Use safety kits while working in the			

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
laboratory.			Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter. • Practice using safety kits.	
LSO 2.1	Identify the motors used in EV applications	2.	• Identification of motors used in EVs	CO2
LSO 2.2	Identify the given motor terminals			
LSO 3.1	Identify the batteries available in the	3.	• Testing of Batteries used in EVs	CO3
laboratory.				
LSO 3.2	Measure an open circuit voltage of the			
given battery.				
LSO 3.3	Determine the Ampere -Hour Capacity of			
the given battery with a given load.				
LSO 3.4	Test the performance of the given battery			
with different charging rates and at				
different ambient temperatures				
LSO 3.5	Demonstrate the effect on the state of			
health of the battery after several charge/				
discharge cycles.				
LSO 3.6	Evaluate the temperature cut-off point for		• Battery Management System	
the given BMS.				
LSO 4.1	Identify the Electrical & Electronics	4.	• Power electronic circuits	CO4
components available in the laboratory				
using Digital Multimeters.				
LSO 4.2	Test the given power electronic			
components using digital meters				
LSO 4.3	Identify the given Power Electronic Circuits			
used in EVs				
LSO 4.4	Identify the components of the Charging		• Identification of Charging systems	
System				
LSO 4.5	Recognize the types of Charging Systems			
available in the Laboratory				

L) Sessional Work and Self-Learning: [2000511G]

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Collect the information related to the performance of different types of electric vehicles and prepare a comparative report on economic and environmental analysis.
2. Collect specifications of different EVs available in the market.
3. Build and test a prototype circuit of converters used in an electric vehicle.
4. Visit a nearby Electric vehicle showroom or service centre & collect information on different types of motors used in electric vehicles and prepare a comparative report on their performance,
5. Visit a nearby charging station and prepare a report describing the layout and components of the charging station.

c. Other Activities:

1. Seminar Topics:

- Communication Systems, Sensors and batteries used in EVs.
- Technological advances in EVs
- Comparison of EVs manufactured by different companies.

2. Surveys – Survey the market and gather information on the electric vehicle manufacturers and submit the report.

3. Product Development- Develop an electric vehicle prototype using locally procured hardware components.

d. Self-learning topics:

- Global Manufacturers of EV
- Indian Manufacturers of EV

- Motors used in EV
- Batteries used in EV
- Cost comparison of EVs in market

M) Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate **CO attainment**.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Sessional Work Assessment (SWA)			Lab Assessment (LA)†	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Sessional Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
CO-1			Assignments	Micro Projects	Other Activities*		
CO-1	10%	10%	20%	--	33%	10%	20%
CO-2	15%	10%	20%	--	33%	15%	20%
CO-3	15%	30%	20%	--	34%	15%	20%
CO-4	30%	30%	20%	50%	--	30%	20%
CO-5	30%	20%	20%	50%	--	30%	20%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

*: Other Activities include seminars, visits, surveys, product development, software development etc.

**: Mentioned under

point#: Mentioned under

point

Note: For CO attainment calculation, Indirect assessment tools like Course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Title and Number	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Introduction to Electric Vehicle	CO1	12	3	5	4
Unit-2.0 Electric Motors used in EVs.	CO2	15	4	6	5
Unit- 3.0 EV Batteries and Energy Storages.	CO3	20	5	9	5
Unit- 4.0 EV Charging Systems	CO4	15	5	6	4
Unit- 5.0 Regulatory Requirements and Policies for EV Industry	CO5	8	3	3	3
Total Marks		70	20	29	21

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

S. N.	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA (%)	PDA (%)	
1	Practice using digital meters such as AC, DC Clamp Meters, Digital Multimeters, Lux Meters, etc.	CO1	30	-	20
2	Practice using Screw Driver Kit, Vernier Caliper, Micrometer, Ampere Meter, Voltage Meter, and Techno-meter.				
3	Practice using safety kits.				
4	Identification of motors used in EV	CO2	15	40	30
5	Testing of Batteries used in EVs	CO3	15	40	30
6	Battery Management System				
7	Power electronic circuits	CO4	40	20	20
8	Identification of Charging systems				

Note: This table can be used for both the end semester as well as progressive assessment of practicals. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student's performance.

P) Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Labs, and Field, Information and Communications Technology (ICT)Based, Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	AC, DC Clamp Meters	Application: Non-contact AC/DC Voltage and Current measurement AC Application: Current: 0-200Amp, Voltage: 0-600Volt DC Application: Current: 4-20mA, Voltage: 0-30Volt.	1
2.	Digital Multimeters	Display: 4 ½ digit Indications: overload protection, polarity indication, over range indication. Auto range change and auto polarity change facility, auto display of polarity and decimal point. DC: Volt: 200mV-600V, Current: 200mA-2A AC: Volt: 200mV-1000V, Current: 200mA-2A Resistance: 200W-20mW, Power supply: 230V, 50Hz Battery operation: 9 Volt battery Electronic components testing facility should be provided in the Multimeter. A provision for an A.C. adaptor(eliminator) must be available along with the multimeter.	1, 3
3.	Lux Meters	Functions: MAX / MIN, Backlight, Auto Power Off Range: 0 ~ 200,000 lux 0 ~ 20,000 fc Accuracy: ± 5% rdg + 10 dgt (< 10.000 lux / fc) ± 10% rdg +	1

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
		10 dgt (>10.000 lux / fc) Resolution: 0.1 lux or 0.1 fc Accessories: Carrying Case, Installation Manual, 9V Battery (installed).	
4.	Screw Driver toolbox	All types of screw drive sets.	1
5.	Vernier Caliper	Range: Lower scale: 0-200mm, Upper Scale: 0-12inch Vernier Resolution: Lower Scale: 0.02mm, Upper Scale: 0.001inch	1
6.	Micrometer	0-25mm (inside/outside)	1
7.	Ampere Meter	Moving iron and Moving Coil	1
8.	Voltmeter	AC(0-250V)/DC(0-24V)	1
9.	Tachometer	For speed measurement (0-3000rpm)	1
10.	Resistors	Low-value Resistors of different types	1,4
11.	Capacitors	Low-value electrolyte Capacitors.	1,4
12.	Inductors	Low-value inductors.	1,4
13.	Safety Kit	First Aid Kit, Helmet, Face Mask, Gloves etc.	1
14.	Motors for Electric Vehicle application	Brushless DC, Induction, Permanent Magnet Synchronous Motors, Switched Reluctance Motors	2
15.	EV Machine Cut-out section	for demonstration & training	2
16.	EV mock layout	for demonstration & training	2
17.	Lithium Ion Battery	12V, 7Ah	3
18.	Lead-acid battery	12V, 7Ah	3
19.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah	3
20.	Battery internal resistance meter	For O.C. voltage & internal battery resistance of each cell	3
21.	Cell Capacity tester	Up to 15V batteries and 3A load current, 10mV voltage and 1mA current resolution, Automatic detection of termination voltage, LED display with a 3-button interface.	3
22.	BMS setup	For Demonstration & training	3
23.	DC power supply	0-32V	3
24.	Power diodes	Power diodes of different current values.	1, 4
25.	Transistors	Power Transistors (NPN, PNP) for Low-frequency high-power applications.	1,4
26.	Voltage Sensors	0-12 Volts.	1,3,4

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
27.	Current Sensors	Volts: + 15v, 0-5v, Current: 4-20mA.	1,3,4
28.	Converter Models	DC to DC and DA to AC converter model	4
29.	Charging Station Simulator	For Demonstration & training purposes.	4
30.	EV Technology layout 3D poster with frame	Fuel cell, EV- Charging Systems, HEV, FCEV, Motors & Controllers etc.	3,4

R) Suggested Learning Resources:

(a) Suggested Books :

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Handbook on Electric Vehicles Manufacturing (E-Car, Electric Bicycle, E- Scooter, E-Motorcycle, Electric Rickshaw, E- Bus, Electric Truck with Assembly Process, Machinery Equipments & Layout)	P.K. Tripathi	Niir Project Consultancy Services; 1st edition (1 January 2022) ISBN-13 : 978-8195676927
2.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN : B07R3WFR28
3.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed. 2022 edition (23 January 2022) ISBN-13 : 978-9811683473
4.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13 : 978-0367137465
5.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13 : 978-1119063643
6.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13 : 978-1839696145

(b) Suggested Open Educational Resources (OER):

1. <https://www.energy.gov/eere/fuelcells/fuel-cell-systems>
2. <https://powermin.gov.in/en/content/electric-vehicle>
3. <https://www.iea.org/reports/electric-vehicles>
4. <https://www.oercommons.org/search?f.search=Electric+Vehicles>

Note: Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

1. Learning Packages
2. Users' Guide
3. Manufacturers' Manual
4. Lab Manuals

S) Course Curriculum Development Team(NITTTR)

- Dr. A. S. Walkey(Coordinator)
- Dr. S. S. Kedar(Co-coordinator)

A) Course Code : 2000505 H / 2000508 H / 2000511H
B) Course Title : **Robotics (Basics)**
C) Pre- requisite Course(s) :
D) Rationale :

Currently, industries demand non-stop and fine quality work in different processes used. It is difficult for the human beings to give same quantity and quality of work with respect to time, environment and complexity of the work in any process industry. To get quality and quantity of work in toughest environment or the environment which is not suitable for the humans to work, industries demand for robots and its operator. Operators who will operate these robots need some basic knowledge of robotics. To fulfill the need of industries and looking to the advancement in technology, this course aims for the diploma engineers to have knowledge and skills in robotics.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

Select robots for given applications employing basic concepts of design and functions of robots.

Interpret co-ordinate systems and degree of freedom for robots.

Use sensors and drives in context of various robotic applications.

Select appropriate robot control techniques,

Use programs to operate robots.

F) Course Articulation Matrix:

Course Outcomes (COs)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs) (if any)		
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2	PSO-3
CO-1	3	-	3	-	2	2	2			
	3	2	1	2	-	-	-			
CO-2	3	2	1	2	2	-	2			
CO-3	3	1	1	2	-	-	-			
CO-4	3	2	3	3	2	3	2			

Legend: High (3), Medium (2), Low (1) and No mapping (-)

G) Scheme of Studies:

Course Code	Course Title	Scheme of Studies (Hours/Week)					
		Classroom Instruction (CI)		Lab Instruction (LI)	Notional Hours (SW+ SL)	Total Hours (CI+LI+SW+SL)	Total Credits(C)
		L	T				
2000505H/2000508H/2000511H	Robotics (Basics)	02	-	04	02	08	05

Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI : Laboratory Instruction (Includes experiments/practical performances in laboratory, workshop, field or other locations using different instructional/implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

SW: Sessional Work/Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, open educational resources (OERs)

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times \text{Notional hours})$

Note: SW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Scheme of Assessment:

Course Code	Course Title	Scheme of Assessment (Marks)						Total Marks (TA+SWA+LA)	
		Theory Assessment (TA)		Sessional Work Assessment (SWA)		Lab Assessment (LA)			
		Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Progressive Sessional Work Assessment (PSWA)	End Sessional Work Assessment (ESWA)	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
2000505H /	Robotics (Basics)	30	70	20	30	20	30	200	
2000508H /									
2000511H									

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

SWA: Sessional Work/Term work & Self Learning Assessment (Includes assessment related to student performance in self learning, assignments, Seminars, micro projects, industrial visits, any other student activities etc.)

Note: Separate passing is must for progressive and end semester assessment for both theory and practical.

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units: [2000505H]

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 1a. Explain the basic terms used in robotics</p> <p>TSO 1b. Identify components used in robots.</p> <p>TSO 1c. Explain various types of movements.</p> <p>TSO 1d. Distinguish various robots' configurations and their workspace.</p> <p>TSO 1e. Evaluate the degrees of freedom of the given robot.</p> <p>TSO 1f. Specify the methods of conversion of the given linear motion into rotary motion and vice-versa.</p> <p>TSO 1g. List the criteria for selecting robot for the given simple application with justification.</p>	<p>Unit-1.0 Basics of Robotics Systems</p> <p>1.1 Definition, need, brief history of robotics</p> <p>1.2 Basic Robot terminology, configuration and its working</p> <p>1.3 Robot components overview - Manipulator, End effecters, Drive system, Controller, Sensors</p> <p>1.4 Basic structure of a Robot and Classification – Cartesian, Cylindrical, Spherical, Horizontal articulated (SCARA), Parallel; Mechanic arm, Degree of freedom, Links and joints, Wrist rotation, Mechanical transmission-pulleys, belts, gears, harmonic drive (gear box)</p> <p>1.5 Linear and Rotary motion and its devices</p> <p>1.6 Selection criteria for robots</p>	CO1,CO2

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 2a. Explain the working of various types of End effecters used in robots with diagram.</p> <p>TSO 2b. Explain with sketches the function of the given sensing device used in a robot.</p> <p>TSO 2c. Describe working of the given sensor used in robot.</p> <p>TSO 2d. Explain the given robot configuration.</p> <p>TSO 2e. Select relevant robot sensors for a given application with justification.</p> <p>TSO 2f. Describe robot machine vision concepts along with block diagram of robot vision system.</p> <p>TSO 2g. Select vision equipment for a given robotic application.</p>	<p>Unit– 2.0 Robot Components</p> <p>2.1 End effecters: types, sketches, working and applications</p> <p>2.2 Sensing and Feedback devices: Optical sensors, Proximity sensors, LVDT, Thermocouple, RTD, Thermistor, Force sensing – strain gauge, Piezoelectric, Acoustic sensing</p> <p>Feedback devices; Potentiometers; Optical encoders; DC tachometers;</p> <p>Robot machine vision: Block diagram of robot vision system, Vision equipment-camera, Imaging Components: Point, Line, Planar and Volume Sensors, Image processing, Part recognition and range detection</p>	CO3
<p>TSO 3a. Explain with sketches the function of the specified actuator used in a robot.</p> <p>TSO 3b. Differentiate between open loop and closed loop systems.</p> <p>TSO 3c. Explain various robotic controls.</p> <p>TSO 3d. Describe block diagrams of the given control system.</p> <p>TSO 3e. Specify drive system used for robotic control as per requirement.</p> <p>TSO 3f. Differentiate the various robot path controls.</p> <p>TSO 3g. Justify the selection of actuators, drives, control system, AC servo motor and path control for making of a robot.</p>	<p>Unit– 3.0 Robotic Drive System and Controller</p> <p>3.1 Actuators; Hydraulic, Pneumatic and Electrical drives; linear actuator; Rotary drives</p> <p>3.2 Control systems : Open loop and close loop with applications and its elements, Servo and non-servo control systems – Types, basic principles and block diagram Robot controller; Level of Controller</p> <p>3.3 AC servo motor; DC servo motors and Stepper motors;</p> <p>3.4 Robot path control: Point to point, Continuous path control and Sensor based path control</p>	CO4
<p>TSO 4a. Explain various robot programming languages.</p> <p>TSO 4b. Programme robot for a given simple job.</p> <p>TSO 4c. Describe the procedure to simulate the given robot movements using the relevant software.</p>	<p>Unit– 4.0 Introduction to Robot Programming</p> <p>4.1 Need and functions of programming</p> <p>4.2 Methods of robot programming: Manual Teaching, Teach Pendant, Lead through, Programming languages. Programming with graphics.</p> <p>4.3 Programming languages: Types, features and applications</p> <p>4.4 Controller programming</p> <p>4.5 Simulation for robot movements</p>	CO5
<p>TSO 5a. Select a robot for the given application.</p> <p>TSO 5b. Describe various applications of Robotics.</p> <p>TSO 5c. Explain safety norms in robot handling.</p> <p>TSO 5d. Describe maintenance procedure for the given robot.</p> <p>TSO 5e. Describe common problems in robot operations and suggest remedial action.</p>	<p>Unit– 5.0 Robotics Applications and Maintenance aspects</p> <p>5.1 Application robots including special types</p> <p>5.2 Robot maintenance: Need and types</p> <p>5.3 Common troubles and remedies in robot operation.</p> <p>5.4 General safety norms, aspects and precautions in robot handling</p>	CO1,CO2, CO3,CO4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)

Note: One major TSO may require more than one Theory session/Period.

K) Laboratory (Practical) Session Outcomes (LSOs) and List of Practical [2000508H]

Practical/Lab Session Outcomes(LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1 Identify parts of Robot on the basis of function. 1.2 Identify joint type & link parameters (link length, link twist, and Link offset), rotational vs. linear motion, used in robot.	1.	Identify components and different configurations of robots.	CO1
LSOs 2.1 Identify different types of robot end effectors. 2.2 Use Mechanical grippers to hold objects. 2.3 Use Vacuum grippers to hold objects.	2.	Pick/hold different objects (shape/weight/stiffness) using robot end effectors.	CO1, CO2
LSOs 3.1 Assemble the complete robot using the components as per the procedure 3.2 Apply the functionalities available in rotor trainer kit. 3.3 Test for various configurations. 3.4 Test for various degrees of freedom.	3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2
LSOs 4.1 Identify various types of sensors used in robotic application. 4.2 Measure angular motion using Synchros. 4.3 Detect objects using optical sensors.	4.	Use different types of robotic sensors for a specific situation.	CO3
LSOs 5.1 Interface stepper motor. 5.2 Control robot with stepper motor interfacing.	5.	Perform robot control with stepper motor interfacing	CO3
LSOs 6.1 Draw the labelled sketch of individual parts and robot arm. 6.2 Assemble the arm using the parts as per the procedure. 6.3 Interface the motor drive and operate.	6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3
LSOs 7.1 Use open source or available relevant software to develop pick and place programme. 7.2 Perform simulation.	7.	Perform pick and place operation using Simulation Control Software.	CO5
LSOs 8.1 Develop programme for using a robot arm with three degrees of freedom. 8.2 Execute the programme.	8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5

Practical/Lab Session Outcomes(LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 9.1 Apply stepper motor control with direction control and step control logic simulation. 9.2 Perform basic PLC programming 9.3 Develop ladder logic programs 9.4 Use programming timers	9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5
LSOs 10.1 Develop a program for a simple application. 10.2 Execute the robot programme.	10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5

L) Sessional Work and Self Learning: [2000511H]

- a. **Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
- b. **Micro Projects:** A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to identify eco-friendly or recycled material prior to selection for robotic applications.
 - 1. Develop stair climb robot using robotic components.
 - 2. Develop RF controller robot using robotic components.
 - 3. Develop robot for metal detection application using robotic components.
 - 4. Develop line follower robot using robotic components.
 - 5. Develop solar floor cleaner robot using robotic components.
 - 6. Develop solar tracker system using robotic components.
 - 7. Develop a greenhouse managing robot for a horticulture application.
- c. **Other Activities:**
 - 1. Seminar Topics: Recent developments in the field of robotics
 - 2. Visits: Visit an automation industry and prepare report for various types of robots employed there and details of any one type of special purpose robot used
 - 3. Case Study: Identify a robotic application in automobiles and present a case study
 - 4. Self learning topics:
 - History of industrial robot
 - Sociological consequences of Robots

M) Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

COs	Course Evaluation Matrix							
	Theory Assessment (TA)**		Sessional Work Assessment (SWA)			Lab Assessment (LA) #		
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Sessional Work & Self Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)	
			Assignments	Micro Projects	Other Activities*			
CO-1	20%	20%	20%	10%	25%	10%	20%	
CO-2	20 %	25%	20%	10%	25%	20%	20%	
CO-3	25%	25%	20%	25%	25%	20%	20%	
CO-4	20%	20%	20%	15%	25%	20%	20%	

CO-5	15%	10%	20%	40%	--	30%	20%
Total Marks	30	70	20	20	10	20	30

Legend:

* : Other Activities include self learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point-(O)

Note: For CO attainment calculation, Indirect assessment tools like Course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Specification Table for End Semester Theory Assessment: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and sessional work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

Unit Number and Title	Relevant COs Number(s)	Total Marks	ETA (Marks)		
			Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Basics of Robotics Systems	CO1,CO2	20	7	7	5
Unit- 2.0 Robot Components	CO2,CO3	16	3	8	5
Unit- 3.0 Robotic Drive System and Controller	CO3,CO4	12	4	4	5
Unit- 4.0 Introduction to Robot Programming	CO5	10	2	4	4
Unit- 5.0 Robotics Applications and Maintenance aspects	CO1,CO2, CO3,CO4	12	4	4	4
Total Marks		70	20	27	23

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Specification Table for Laboratory (Practical) Assessment:

S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA (%)	PDA (%)	
1.	Identify components and different configurations of robots.	CO1	30	50	20
2.	Pick/hold different objects (shape/weight/stiffness) using robot end effectors.	CO1, CO2	60	30	10
3.	Assemble robot to test various configurations and degrees of freedom using robot trainer kit.	CO1, CO2	70	20	10
4.	Use different types of robotic sensors for a specific situation.	CO3	60	30	10
5.	Perform robot control with stepper motor interfacing	CO3	70	20	10
6.	Assemble robot arms using mechanical transmission components and interface motor drive.	CO2, CO3	60	30	10
7.	Perform pick and place operation using Simulation Control Software.	CO5	70	20	10
8.	Perform 2D simulation of a 3 DOF robot arm.	CO2, CO4, CO5	60	30	10
9.	Programme 5-axis Robotic arm to control various motions.	CO3, CO4, CO5	60	30	10
10.	Program to execute a simple robot application (like painting, straight welding) using a given configuration.	CO4, CO5	60	30	10

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based Learning, Role Play, Live

Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.No. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Programmable Robot trainer kit	Trainer kit with - Minimum 3 linkages, Minimum 4 degree of freedom, Mechanical end effector with servo control, interfacing card (RC servo output, sensors input)	1,2,3
2.	Robotic Arm Control Trainer Kit	Robotic Arm with five axis control application through PLC.; PLC; Digital Inputs: 8 Nos with 4mm banana sockets for getting the external inputs; Digital Outputs: 6 Nos with 4mm banana sockets for applying the inputs; Digital Input Controls: On board Toggle switches, Push Buttons & input potentiometers; Digital Outputs Controls: 6 nos. on board LED indicators; PC interfacing facility through RS-232.	8,9
3.	Proximity trainer kit	Indicator Type:LED; PCB Type Glass Epoxy SMOBC PCB; Interconnections: 2mm banana Patch cords; On board DC motor to see the application of Proximity sensor. Test points to analyse the signal On board variable supply to vary the speed of DC motor. ON/OFF switch and LED for power indication. All interconnections to be made using 2mm banana Patch cords. User manual and patch cords. Built-in power supply. Robust enclosure wooden/plastic box.	4
4.	Robot - Line Tracking Mouse Kit	Product Dimensions (20.3 x 11.4 x 8.9 cm); programmed IC, 2 unassembled gear motors, printed circuit boards, mouse-shaped plastic body, necessary components and wires, step-down power converter	3, 4,5
5.	Intelligent Robot Actuator Module	Integrity Serial Bus System, CAN to Build Intelligent Device Network, Open Hardware Platform, Arduino, to control Robot sub-Systems of motor-sensor, movable Omni Wheel of Omni-Directional, Actuator operation control by DC Encoder Motor, DC-Motor control and operation by Accelerometer, Gyro, Ultrasonic and PSD sensor, Androx Studio; brushless ILM 70x10 Robo Drive DC motor; sensor-actuator units of ARMAR-4; SD-25-160-2A-GR-BB Harmonic Drive reduction gear unit high gear ratio of 160: 1; structural parts (white) are made out of high-strength aluminium, Hollow shaft with strain gauges for torque sensing, motor's magnetic incremental encoder (AMS5306), digital buses (SPI or 12C); Motor interface PCB includes a 13-Bit temperature-to-digital converter with a temperature range from -40°C to 125°C (Analog Devices ADT7302)	3, 4, 5
6.	6-axis Robotics Trainer	Programmable robotic arm with an interactive front panel. Software to demonstrates	3, 4, 5

S.No. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/ Practical Number
		functioning of the trainer as well as allows a user to develop their own programs. NV330; 8 bit microcontroller to ARM processors; Record and Play capability; Optional interfacing with PLC; Touch operated ON/OFF switch; Auto set to home position; Applications can be developed; Data acquisition using USB	
7.	Robotic Drive System	AC servo motor; DC servo motors, Stepper motors; DC tachometers, etc.	1,3,5,6,7,10
8.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	8, 10
9.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc	4
10.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4,10

R) Suggested Learning Resources:

(a) Suggested Books :

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Robotics Mechanics and Control	John Craig	Pearson Education ; 978-9356062191
2.	Industrial Robotics -Technology, Programming and Applications	Nicholas Odrey Mitchell Weiss, Mikell Groover Roger Nagel, Ashish Dutta	McGraw Hill Education; 2nd Edition; 978 -1259006210
3.	Robotic engineering : an integrated approach	Richard D. Klafter, Thomas A. Thomas A. Chmielewski, Michael Negin	Prentice Hall of India, N.Delhi , 978-8120308428
4.	Industrial Robotics Technology, Programming and Applications	Mikell P. Groover, Mitchell Weiss, Roger N. Nagel, Nicholas G. Odrey	McGraw-Hill Education , Second Edition, 978-1259006210
5.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020, 978-9389583281
6.	Introduction to Robotics: Analysis, Control, Applications	Saeed B.Niku	Wiley; Second Edition, 978-8126533121
7.	Essentials of Robotics Process Automation	S. Muhkerjee	Khanna Publication, First edition, 978-9386173751
8.	Robotics	R R Ghorpade , M M Bhoomkar	Nirali Prakashan 978-9388897020

(b) Suggested Open Educational Resources (OER):

1. <https://archive.nptel.ac.in/courses/112/105/112105249/>
2. <https://openlearning.mit.edu/mit-faculty/residential-digital-innovations/task-centered-learning-intro-eeecs-robotics>
3. <http://www.mtabindia.com/>
4. <http://www.robotics.org/>
5. https://en.wikipedia.org/wiki/Industrial_robot

6. <http://www.servodatabase.com>
7. <https://www.youtube.com/watch?v=fH4VwTgfyrQ>
8. https://www.youtube.com/watch?v=aW_BM_S0z4k
9. <https://uk.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/robotic-parts-guide>
10. <https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensors-software-the-cloud>
11. <https://www.iqsdirectory.com/articles/machine-vision-system.html>

Note: Teachers are requested to check the creative commons licence status/ financial implications of the suggested OER, before use by the students.

(c) Others: (If any)

1. Learning Packages
 - <https://www.edx.org/learn/robotics>
 - <https://www.coursera.org/courses?query=robotics>
 - <https://www.udemy.com/topic/robotics/>
 - <https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.%20Robotic%20package%20for%20education.pdf>
2. Users' Guide
 - <https://roboindia.com/store/DIY-do-it-yourself-educational-kits-robotics-embedded-system-electronics>
 - <https://www.robomart.com/diy-robotic-kits>
 - <https://www.scientechworld.com/robotics>
3. Lab Manuals
 - http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
 - <https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf>

CAD/CAM LAB

Subject Code 2025506	Practical			No of Period in one session :			Credits 02
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal (PA)	:	15	
	—	—	04	External (ESE)	:	35	

Course Objectives:

- To understand the fundamentals and use CAD.
- To conceptualize drafting and modeling in CAD.
- To interpret the various features in the menu of solid modeling package.
- To synthesize various parts or components in an assembly.
- To prepare CNC programmes for various jobs.

Course Content:

S.No. Topics for practice

PART-A Introduction: Part modelling; Datum Plane; constraint; sketch; dimensioning; ex- trude; revolve; sweep; blend; protrusion; extrusion; rib; shell; hole; round; chamfer; copy; mirror; assembly; align; orient.

Exercises: 3D Drawings of

- 1). Geneva Wheel; 2). Bearing Block; 3). Bushed bearing: 4). Gib and Cotter joint; 5). Screw Jack; 6). Connecting Rod:

Note: Print the orthographic view and sectional view from the above assembled 3D drawing.

PART-B CNC Programming and Machining:

Introduction; 1). Study of CNC lathe, milling; 2). Study of international standard codes: G-Codes and M-Codes; 3). Format – Dimensioning methods; 4). Program writing – Turning simulator – Milling simulator, IS practice – commands menus; 5). Editing the program in the CNC machines; 6). Execute the program in the CNC machines; Exercises:

Note: Print the Program from the Simulation Software and make the Component in the CNC Machine.

CNC Turning Machine: (Material: Aluminium/Acrylic/Plastic rod)

1. Using Linear and Circular interpolation - Create a part program and produce component in the Machine.
2. Using Stock removal cycle – Create a part program for multiple turning operations and produce component in the Machine.
3. Using canned cycle - Create a part program for thread cutting, grooving and produce component in the Machine.

CNC Milling Machine (Material: Aluminium/ Acrylic/ Plastic)

1. Using Linear interpolation and Circular interpolation – Create a part program for grooving and produce component in the Machine.
2. Using canned cycle - Create a part program for drilling, tapping, counter sinking and produce component in the Machine.
3. Using subprogram - Create a part program for mirroring and produce component in the Machine.

Reference Books:

1. Machine Drawing – P.S. Gill S. K. Kataria& Sons, Delhi., 17th Revised edition, 2001
2. Mechanical Draughtsmanship - G.L. TamtaDhanpatRai& Sons, Delhi, 1992
3. Inside AutoCAD – D. Raker and H. Rice, BPB Publications, New Delhi, 1985
4. CAD/CAM/CIM – P. Radhakrishnan, S. Subramaniyan& V. Raju, New Age International Pvt. Ltd., New Delhi, 3rd Edition,
5. Engineering AutoCAD, A.P. Gautam& Pradeep Jain, Khanna Book Publishing Co., Delhi

Course outcomes:

At the end of the course, the student will be able to:

CO1 Explain the 3D commands and features of a CAD software

CO2 Create 3D solid model and find the mass properties of simples solids

CO3 Demonstrate the working of CNC turning and milling machine

CO4 Develop the part program using simulation software for Lathe and Milling

CO5 Assess the part program, edit and execute in CNC turning and machining centre

Elective Lab I
REFRIGERATION AND AIR-CONDITIONING LAB

Subject Code 2025507A	Practical			No of Period in one session :			01
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal (PA)	:	07	
	—	—	02	External (ESE)	:	18	

Course objectives:

- To understand the basics of Refrigeration cycles.
- To understand basics of vapour compression and vapourabsorbtion systems.
- To identify components and refrigerants and lubricants of a refrigeration system.
- To understand control strategies for refrigeration system.
- To understand the basics about air conditioning systems.

CONTENTS: PRACTICAL

- (i) To Find COP of vapour compression refrigeration system.
- (ii) Study of different types of condenser in refrigeration system.
- (iii) Study of evaporators used in refrigeration system.
- (iv) To find out DBT and WBT of given thermometer.
- (v) Study of sling Psychrometer.
- (vi) Study of factors affecting air conditioning.
- (vii) To detect refrigerant leakage.

References:

1. Refrigeration and Air Conditioning – Sadhu Singh, Khanna Book Publishing Co., New Delhi
2. Refrigeration and Air Conditioning – S. Domakundawar, DhanpatRai publications.
3. Refrigeration and Air Conditioning – A.S.Sarao& G.S. Gabi, 6th edition, SatyaPrakashan publications, New Delhi, 2004.
4. Principles of Refrigeration – Roy J.Dossat, 5th edition, Pearson Publications, 2001.
5. Refrigeration and Air Conditioning – M.ZakriaBaig, Premier/ Radiant Publishing House.
6. Refrigeration and Air Conditioning – C.P Arora, Tata McGraw Hill Education, 2000.

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Define refrigeration and types of Refrigeration cycles
- CO2 Explain Vapour Compression and Vapour Absorbtion System working principles
- CO3 Identify the components required for refrigeration system.
- CO4 Identify the controlling components for a refrigeration system. CO5 Explain the working principles of Air-conditioning.

ELECTIVE LAB I
HEAT TRANSFER LAB

Subject Code 2025507B	Practical			No of Period in one session :			01
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal (PA)	:	07	
	—	—	02	External (ESE)	:	18	

CONTENTS: PRACTICAL

- (i) To study of different types Fins on models in laboratory.
- (ii) To study of parallel flow heat exchange and find its efficiency experimentally.
- (iii) To study of counter flow heat exchanger and its efficiency experimentally.
- (iv) Study of Heissier chart.
- (v) Study of Grey- Diffuse Isotropic surface.
- (vi) Study of LMTD of heat exchanger available in lab.

References:

1. Fundamentals of Heat and Mass Transfer by F.P.Incropera and D.P.Dewitt, 4th ed., John Wiley & Sons.
2. Heat Transfer - A Basic Approach by M.N.Ozisik, McGrawhill.
3. Heat Transfer by J.P.Holman, 8th ed., McGrawhill.
4. Elements of Heat & Mass Transfer by Vijay Gupta, 2nd ed., New Age International Publishers.

Course outcomes:

Course outcomes:

At the end of the course, the student will be able to:

CO1 Understand the concepts of conduction

CO2 understand the concepts of fins

CO3 Understand the concepts of radiation.

CO4 Understand the concepts of convection

CO5 Understand the basic concepts of heat exchangers.

ELECTIVE LAB I
POWER PLANT ENGINEERING LAB

Subject Code 2025507C	Practical			No of Period in one session :			Credits 01
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal (PA)	:	07	
	—	—	02	External (ESE)	:	18	

Course objectives:

- To understand the present scenario of power in India.
- To recognize various load terminologies used in power plants.
- To understand hydro working principles
- To understand working of Diesel, Gas and Nuclear powerplants.
- To understand the issues and safety precautions in power plants.

CONTENTS: PRACTICAL

- i To study of performance and operating characteristic of power plant.
- ii To study of diesel power plant and its layout.
- iii To study of advantages of hydro power plant and show its schematic diagram
- iv To study of thermal fission reactors PWR, BWR and gas cooled reactors.
- v To study the environmental impact of Power plant mainly. Greenhouse effect, acid rain.

References:

1. Power plant Engineering - P.K. Nag 4th edition, Tata McGraw Hill Education, 2014.
2. Power plant Engineering – Frederick T. Morse, Litton Educational Publishing Inc. 1953.
3. A Course in Power Plant Engineering – Subhash C. Arora, S. Domakundwar, Dhanpat Rai, 1984.
4. Power Plant Engineering – P.C. Sharma, S.K. Kataria & sons, 2009.
5. Power System Engineering – R.K. Rajput, Firewall Media, 2006.

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Familiarised with the present and future power scenario of India.
- CO2 Enlist various load terminologies in power plants
- CO3 Working and classifications in hydro power plant
- CO4 Working principles of Diesel, Gas and Nuclear power plants.
- CO5 Understand the issues and necessity of safety concepts of power plants.

ELECTIVE LAB /COE LAB
AUTOMOBILE ENGINEERING LAB

Subject Code 2025508A	Practical			No of Period in one session :		02
	No. of Periods Per Week			Full Marks	: 50	
	L	T	P/S	Internal (PA)	: 20	
	—	—	04	External (ESE)	: 30	

Course objectives:

- To understand the basic structure and components of an automobile.
- To understand the concepts of cooling and lubricating systems.
- To understand the concepts of Ignition and transmission and steering systems.
- To understand the classification and necessity of suspension system.
- To identify different special vehicles.

CONTENTS: PRACTICAL

- (i) To Study of cooling system of four stroke petrol/diesel engine available in lab.
- (ii) To study of ignition system of petrol engine.
- (iii) To study of ignition system of diesel engine
- (iv) To study of steering system available in lab.
- (v) To study transmission system available in lab.
- (vi) To study of suspension system available in lab.

References:

1. Automobile Engineering Vol I, II, Kirpal Singh, Standard Publishers Distributors, Delhi.2012.
2. Automobile Mechanics, A.K. Babu, S.C. Sharma, Khanna Publications, New Delhi
3. Automotive Mechanics: Principles and Practices, Joseph Heitner, East West Press
4. Automotive Mechanics, S. Srinivasan, 2nd Edition, Tata McGraw Hill
5. Automobile Engineering Vol I and Vol II, K. M. Gupta, Umesh Publications.
6. Automotive Engineering, Jain and Asthana, Tata McGraw Hill.

Course outcomes:

At the end of the course, the student will be able to:

CO1 Identify the components of an automobile with their working
 CO2 Explain the concepts of cooling and lubricating systems.
 CO3 Explain the concepts of Ignition and Transmission and steering systems.
 CO4 Identify different suspension systems and their applications.
 CO5 Differentiate the special vehicles according to the usage.

Elective Lab / COE LAB
FARM EQUIPMENT AND FARM MACHINERY LAB

Subject Code 2025508B	Practical			No of Period in one session :		02
	No. of Periods Per Week			Full Marks	: 50	
	L	T	P/S	Internal (PA)	: 20	
	—	—	04	External (ESE)	: 30	

Course objectives:

- To find and characterize the machinery based on crop production.
- To find the field efficiency and capacities to calculate the economics of machinery.
- To find the machines usages for different tillage, and its power requirement calculations.
- To understand sowing, planting & transplanting equipment based on crop.
- To understand machinery materials and heat effects for different farm machinery equipment.

CONTENTS: PRACTICAL

- (i) Study of Primary tillage machines.
- (ii) Study of rotary tillage and deep tillage machines.
- (iii) Study of disc plough and chisel Plough.
- (iv) Study of planting and transplanting equipment.
- (v) To Study of Heat treatment process for agricultural machinery.
- (vi) Calibration of seed- drills/ planters.

References:

1. Principles of Farm Machinery - R.A. Kepner, Roy Bainer, and E. L. Berger
2. Farm Machinery and Equipment - H. P. Smith
3. Farm Machinery and equipment - C. P. Nakra
4. Engineering principles of Agril. Machines - Dr. Ajit K. Srivastav, Caroll E. Goering and Roger P. Rohrbach.
5. Farm Machinery – an Approach - S. C Jain & Grace Phillips
6. Agril. Engineering through worked out examples - Dr. R. Lal and Dr. A.C. Dutta
7. Farm Power and Machinery Engineering - Dr.R. Suresh and Sanjay Kumar

Course outcomes:

At the end of the course, the student will be able to:

CO1 Classify the Farm Machineries, equipment and materials

CO2 Describe the objectives of Farm mechanization.

CO3 Explain selection of the machineries

CO4 Discuss the forces acting on tillage tools and hitching systems

CO5 Understand the calibration, constructional features and working of various farm equipments.

TERM WORK
Summer Internship-II (4 weeks)

Subject Code 2025509	Term Work			No of Period in one session :			Credits 02
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal (PA)	:	15	
	—	—	4 weeks	External (ESE)	:	35	

- How important is it really to do an internship before applying for a job?
- Do you need to get the hands-on experience that is talked about when discussing the importance of internships or is it a matter of just landing the right job?

During the Course duration year, students may feel overwhelmed with coursework, sports, or co-curricular activities that may keep them extremely busy while leaving no time to think of doing an internship or a job. Many students may also feel that they are caught in a bind since they need to make money to pay for their expenses but they can only find unpaid internships in their field.

Getting Your Feet Wet

Internships are a proven way to gain relevant knowledge, skills, and experience while establishing important connections in the field. Internships are also a way to get your feet wet and find out if a specific field is something you could see yourself doing full-time.

Internships maybe completed during fall or spring semester or full time over the course of the summer. Unpaid internships may be easier to get but may also pose problems if making money is necessary, especially during the summer. There are many who cannot afford to work for no pay, so they are forced into doing menial jobs such as wait staff or bartending to work their way through college. It may preclude some from doing an internship which may be a detriment when hoping to get a full-time job.

Financial Considerations

Financial considerations when looking for an internship can make a big difference in the decision-making process. Sometimes, students will take a part-time or full-time job to supplement the time that they are spending at their internship. Whether an internship is paid or unpaid, there are many things that need to be taken into consideration to decide if an internship is worthwhile. It's important to decide if an internship will ultimately be in the best interest of the student to help meet the requirements needed when applying for a full-time job.

How to Get Funding for an Internship

Some colleges also offer funded internships for students. Check with your college to see if they offer a funded internship program that may help to meet the requirements of your college curriculum while offering experiences that employers seek when hiring new college graduates for entry-level jobs. Many foundations and organizations offer financing to college students so they may try writing to a number of them to see if they provide funding for college students seeking to do internships in their field.

Having an Internship and a Job

Students may elect to do a summer internship a couple of days per week while working a part-time job for the remainder of the time. For those who need to maximize the amount of money they make over the course of the summer, they may look into doing an internship during the academic year when they are less likely to expect to make money to help defray their college expenses.

In addition to internships, volunteer opportunities can also be an excellent way to gain experience and exposure to the workforce. Employers love to see volunteer experiences on a student's resume.

Volunteering shows commitment to causes and certain values that are intrinsic to the individuals who have participated in these types of experiences. Employers look for employees who are publicly engaged and who take an interest in community service and in doing good work.

TERM WORK
MAJOR PROJECT

Subject Code 2025510	Term Work			No of Period in one session :			02
	No. of Periods Per Week			Full Marks	:	25	
	L	T	P/S	Internal (PA)	:	07	
	—	—	04	External (ESE)	:	18	

Course objectives:

The projects if done right can help enthusiastic Mechanical engineering students to develop the skills/profile needed for an exciting career in core technologies. Since practical skills are very important to work on core industries, experts tend to analyse candidate's performance based on their project experience during the interviews.

These projects provide an excellent opportunity to learn and showcase your practical skills to your future interviewers easily. If spent qualitatively you can build a very innovative electrical project and get a great learning experience. By doing so, you will not only develop an innovative project but also develop valuable skills needed for a successful career in core technologies related to electrical engineering. The best way to master a subject is by doing projects. Through a project you not only get a deeper understanding of the subject but also gain hands-on practical experience. If you are looking to do internships in college, the best way to catch the companies attention is through projects.

Projects are generally done as a combined team effort. Two or more students work under a guide or a staff to get a certain results. By doing a project, you will

- Understand your subject better
- Get practical experience
- Chance to showcase your skills
- Learn about team work, communication skills and responsibilities

When companies look for interns, they prefer students who have good understanding of the subject with atleast some hands on experience. The best to achieve both is by doing projects.

There is no fixed time to do a project. You can do it right from your first year in college. If you are looking to do a technical project, then the best time to start would be mid second year. It's not mandatory that you do many projects but make sure that you at least do one project. A lot of students tend to do few small projects from their second year and do a big project in their final year. By showcasing your projects, you can even look for internships while in college.

You can do any kind of projects based on your interests or subjects. The best way to go about this is to figure out what you are interested in. So the first step is to find your interest and then do projects in your area of interest.

Find your area of interest and then do a project in that field.

You can start by exploring different areas and then pick the field in which you are interested in. You can learn more about it and start working on small problems.

TERM WORK
COURSE UNDER MOOCS / NPTEL / OTHERS

Subject Code 2025511	Term Work			No of Period in one session :			Credits 01
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal (PA)	:	20	
	—	—	02	External (ESE)	:	30	

STATE BOARD OF TECHNICAL EDUCATION BIHAR

Scheme of Teaching and Examinations for

VIth SEMESTER DIPLOMA IN MECHANICAL ENGINEERING

(Effective from Session 2020-21 Batch)

THEORY

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION- SCHEME							
				Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks A	Class Test (CT) Marks B	End Semester Exam (ESE) Marks C	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject
1.	Entrepreneurship and Start-ups	2000601	03	03	10	20	70	100	28	40	03
2.	Design of Machine Elements	2025602	04	03	10	20	70	100	28	40	04
3.	Advanced Manufacturing Processes	2025603	04	03	10	20	70	100	28	40	04
4.	Open Elective-I		03	03	10	20	70	100	28	40	03
Energy Conservation & Audit (2025604A)			Disaster Management (2015604B)								
5.	Open Elective-II / COE		03	03	10	20	70	100	28	40	02
Indian Constitution (2000605A)			Operations Research (2025605B)				Project Management (2015605B)				
Artificial Intelligence (Advance) (2000605B)		Internet of Things (Advance) (2000605C)		Drone Technology (Advance) (2000605D)		3D Printing & Design (Advance) (2000605E)					
Industrial Automation (Advance) (2000605F)			Electric Vehicles (Advance) (2000605G)				Robotics (Advance) (2000605H)				
Total :-				17				350	500		16

PRACTICAL

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME						
				Periods per Week	Hours of Exam.	Practical (ESE)		Total Marks	Pass Marks In the Subject	Credits
						Internal (PA)	External (ESE)			
6.	Elective Lab / COE Lab		04 50% Physical 50% Virtual	03	20	30	50	20	02	
	Advanced Manufacturing Processes Lab (2025608A)		Artificial Intelligence (Advance) Lab (2000608B)				Internet of Things (Advance) Lab (2000608C)			
	Drone Technology (Advance) Lab (2000608D)		3D Printing & Design (Advance) Lab (2000608E)				Industrial Automation (Advance) Lab (2000608F)			
	Electric Vehicles (Advance) Lab (2000608G)					Robotics (Advance) Lab (2000608H)				
	Total :-				04			50		02

TERM WORK

Sr. No.	SUBJECT	SUBJECT CODE	TEACHING SCHEME	EXAMINATION-SCHEME					
				Periods per Week	Marks of Internal (PA)	Marks of External (ESE)	Total Marks	Pass Marks in the Subject	Credits
7.	Seminar	2025609	4	15	35	50	20	2	
8.	Major Project	2025610	6	30	70	100	40	3	
9.	Term Work		2	20	30	50	20	1	
	Course Under Moocs /NPTEL/ Others TW (2025611)		Artificial Intelligence (Advance) TW (2000611B)	Internet of Things TW (Advance) (2000611C)			Drone Technology TW (Advance) (2000611D)		
	3D Printing & Design (Advance) TW (2000611E)		Industrial Automation (Advance) TW (2000611F)	Electric Vehicles (Advance) TW (2000611G)			Robotics (Advance) TW (2000611H)		
	Total :-		12				200		06
Total Periods per week Each of duration One Hour = 33				Total Marks = 750				24	

ENTREPRENEURSHIP AND START –UPS

Subject Code 2000601	Theory			No of Period in one session: 42			Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
				CT	:	20	

Course Objectives:

The main aims of the course are to familiarize students with various concepts used in understanding processes involved in entrepreneurship and business formation and development.

- To acquire Entrepreneurial spirit and resourcefulness.
- To familiarize with various uses of human resource for earning dignified means of living.
- To understand the concept and process of entrepreneurship - its contribution and role in the growth and development of individual and the nation.
- To acquire entrepreneurial quality, competency, and motivation.
- To learn the process and skills of creation and management of entrepreneurial venture.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	Introduction to Entrepreneurship and Start – Ups <ul style="list-style-type: none"> • Definitions, Traits of an entrepreneur, Entrepreneurship, Motivation • Types of Business Structures, Similarities and differences between entrepreneurs and managers. 	06
Unit-II	Business Ideas and their implementation <ul style="list-style-type: none"> • Discovering ideas and visualizing the business • Activity map • Business Plan 	06
Unit-III	Idea to Start-up <ul style="list-style-type: none"> • Market Analysis – Identifying the target market, • Competition evaluation and Strategy Development, • Marketing and accounting, • Risk analysis 	10
Unit-IV	Management <ul style="list-style-type: none"> • Company's Organization Structure, • Recruitment and management of talent. • Financial organization and management 	08
Unit-V	Financing and Protection of Ideas <ul style="list-style-type: none"> • Financing methods available for start-ups in India • Communication of Ideas to potential investors – Investor Pitch • Patenting and Licenses 	08
Unit-VI	Exit strategies for entrepreneurs, bankruptcy, and succession and harvesting strategy.	04
	Total	42 hrs.

References:

1. The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company, Steve Blank and Bob Dorf, K & S Ranch ISBN – 978- 0984999392
2. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, Eric Ries, Penguin UK ISBN – 978-0670921607
3. Demand: Creating What People Love Before They Know They Want It Adrian J. Slywotsky with Karl Weber, Headline Book Publishing ISBN – 978- 0755388974
4. The Innovator's Dilemma: The Revolutionary Book That Will Change the Way You Do Business, Clayton M. Christensen, Harvard business ISBN: 978- 142219602
5. Entrepreneurship and Start-ups, Ekta Sharma, FPH

SUGGESTED SOFTWARE/LEARNING WEBSITES:

- a. <https://www.fundable.com/learn/resources/guides/startup>
- b. <https://corporatefinanceinstitute.com/resources/knowledge/finance/corporatestructure/>
- c. <https://www.finder.com/small-business-finance-tips>
- d. <https://www.profitbooks.net/funding-options-to-raise-startup-capital-for-your-business/>

Course outcomes:

Upon completion of the course, the student will be able to :

CO : 1 Understand the dynamic role of entrepreneurship and small businesses

CO : 2 Organize and Manage a Small Business

CO : 3 Plan the Financial strategy and Control

CO : 4 Operate forms of Ownership for Small Business

CO : 5 Make Strategic Marketing Planning

CO : 6 Launch new Product or Service Development

CO : 7 Conceive business Plan

Subject Code 2025602	Theory			No of Period in one session: 56			Credits 04
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	04	—	—	TA	:	10	
				CT	:	20	

Course objectives:

- To enable the student to design and draw simple machine components used in small and medium scale industries.
- To understand the basic philosophy and fundamentals of Machine Design.
- To understand the modes of failures of m/c components and decide the design criteria and equations.
- To analyze and evaluate the loads, forces, stresses involved in components and subassemblies and decide the dimensions.
- To develop analytical abilities to give solutions to engineering design problems.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	1.1 Introduction to Design: Machine Design philosophy and Procedures; General Considerations in Machine Design; 1.2 Fundamentals: Types of loads, concepts of stress, Strain, Stress – Strain Diagram for Ductile and Brittle Materials 1.3 Types of Stresses; Bearing pressure Intensity; Crushing; Bending and Torsion; Principal Stresses; Simple Numerical; Creep strain and Creep Curve; Fatigue; S-N curve; Endurance Limit; Factor of Safety and Factors governing selection of factor of Safety; Stress Concentration: Causes & Remedies; Converting actual load or torque into design load or torque using design factors Like velocity factor, factor of safety & service factor; 1.4 Properties of Engineering materials; Designation of materials as per IS and Introduction to International standards & Advantages of standardization; Use of design data book; Use of standards in design and preferred numbers series; 1.5 Theories of Elastic Failures; Principal normal stress theory; Maximum shear stress theory & Maximum distortion energy theory.	10
Unit-II	2.1 Design of simple machine parts: Cotter Joint; Knuckle Joint; Turnbuckle; Design of Levers: Hand/Foot Lever & Bell Crank Lever; Design of C- Clamp; Off-set links; Overhang Crank; Arm of Pulley. 2.2 Antifriction Bearings: Classification of Bearings; Sliding contact & Rolling contact; Terminology of Ball bearings: Life Load relationship, Basic static load rating and Basic dynamic load rating, limiting speed; Selection of ball bearings using manufacturer's catalogue.	10
Unit-III	3.1 Design of Shafts, Keys, Couplings and Spur Gears: Types of Shafts; Shaft materials; Standard Sizes; Design of Shafts (Hollow and Solid) using strength and rigidity criteria; ASME code of design for line shafts supported between bearings with one or two pulleys in between or one over- hung pulley; Design of Sunk Keys; Effect of Keyways on strength of shaft;	12

	3.2 Design of Couplings – Muff Coupling, Protected type Flange Coupling, Bush-pin type flexible coupling; 3.3 Spur gear design considerations; Lewis equation for static beam strength of spur gear teeth; Power transmission capacity of spur gears in bending.	
Unit-IV	4.1 Design of Power Screws: Thread Profiles used for power Screws - Relative merits and de- merits of each; Torque required to overcome thread friction; Self- Locking and overhauling property; Efficiency of power screws; Types of stresses induced; Design of Screw Jack; Toggle Jack. 4.2 Design of springs: Classification and Applications of Springs; Spring terminology; Materials and Specifications; Stresses in springs; Wahl's correction factor; Deflection of springs; Energy stored in springs; Design of Helical, Tension and Compression springs subjected to uniform applied loads like I.C. engine valves, Weighing balance, Railway buffers and Governor Springs; 4.3 Leaf springs: Construction and Application.	12
Unit-V	5.1 Design of Fasteners: Stresses in Screwed fasteners; Bolts of Uniform Strength; Design of Bolted Joints subjected to eccentric loading; Design of Parallel and Transverse fillet welds; Axially loaded symmetrical section; Merits and demerits of screwed and welded joints. 5.2 Ergonomics & Aesthetic consideration in design: Ergonomics of Design: Man– Machine relationship; Design of Equipment for control, environment & safety; Aesthetic considerations regarding shape, size, color & surface finish.	12

References:

1. Machine Design – Sadhu Singh, Khanna Book Publishing Co., Delhi (ISBN:978-9382609-575)
2. Machine Design Data Book – Sadhu Singh, Revised Edition, Khanna Book Publishing Co., Delhi (ISBN: 978-9382609-513)
3. Introduction to Machine Design – V.B.Bhandari, Tata Mc- Graw Hill, New Delhi.
4. Mechanical Engineering Design – Joseph Edward Shigley, Tata Mc- Graw Hill, New Delhi.
5. Machine design – Pandya & Shah, Dhanpat Rai & Son, New Delhi.
6. Machine design – R.K.Jain, Khanna Publication, New Delhi.
7. Design Data Book – PSG Coimbatore, PSG Coimbatore.
8. Hand Book of Properties of Engineering Materials & Design Data for Machine Elements – Abdulla Shariff, Dhanpat Rai & Sons, New Delhi.

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Analyze the various modes of failure of machine components under different load patterns.
- CO2 Design and prepare part and assembly drawings.
- CO3 Use design data books and different codes of design.
- CO4 Select standard components with their specifications from manufacturer's catalogue.
- CO5 Develop drawings on CAD software.

Subject Code 2025603	Theory			No of Period in one session: 56			Credits 04	
	No. of Periods Per Week			Full Marks				
	L	T	P/S	ESE	:	100		
	04	—	—	TA	:	10		
				CT	:	20		

Course objectives:

- To know the functions of Jigs and Fixtures.
- To know the applications of jig-boring machines.
- To identify different fabrication methods of plastic processing viz., sheet forming, blow moulding, laminating and reinforcing of plastics.
- To distinguish between non-conventional machining and traditional machining processes.
- To know about the advancements in the area of manufacturing and production processes.
- To impart knowledge & skills necessary for working in modern manufacturing environment.
- To get familiarized with working principles and operations performed on non-traditional machines, machining center, SPM, automated machines and maintenance of machine tools.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	<p>Jigs & Fixtures:</p> <p>1.1 Definition of jig; Types of jigs: Leaf jig, Box and Handle jig, Template jig, Plate jig, Indexing jig, Universal jig, Vice jigs - constructional details of the above jigs; General consideration in the design of drill jigs; Drill bush;</p> <p>1.2 Types of fixtures: Vice fixtures, Milling fixtures, Boring fixtures, Grinding fixtures Constructional details of the above fixtures; Basic principles of location; Locating methods and devices;</p> <p>1.3 Basic principles of the clamping; Types of clamps: Strap clamps, Cam clamps, Screw clamps, Toggle clamps, Hydraulic and Pneumatic clamps.</p>	10
Unit-II	<p>Jig Boring: Introduction;</p> <p>2.1 Jig boring on vertical milling machine; Types of jig boring machines: Open front machine, Cross rail type machine - constructional details & their working; System of location of holes. Plastic Processing:</p> <p>2.2 Moulding processes: Injection moulding, Compression moulding, Transfer moulding; Extruding; Casting; Calendering; Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing; Applications of Plastics.</p>	12
Unit- III	<p>Modern Machining Processes:</p> <p>3.1 Introduction – comparison with traditional machining; Ul-trasonic Machining: principle, Description of equipment, applications; Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, applications; Wire cut EDM: Principle, Description of equipment, Controlling parameters; applications; Abrasive Jet Machining: principle, description of equipment, application; Laser Beam Machining: principle, description of equipment, application; Electro Chemical Machining: description of equipment, application..</p>	12

Unit- IV	<p>CNC Milling Machines:</p> <p>4.1 Vertical and horizontal machining center: Constructional features, Axis identification, Electronic control system. Automatic tool changer and tool magazine.</p> <p>4.2 CNC programming: Preparatory functions (G code), miscellaneous functions (M code), Part programming including subroutines and canned cycles. Principles of computer aided part programming.</p> <p>4.3 Machine Tool Automation: Introduction and Need;</p> <p>(A) Single spindle automates, transfer lines.</p> <p>(B) Elements of control system, Limit switches, Proximity switches, Block diagram for feedback and servo control system, Introduction to PLC, Block diagram of PLC.</p>	14
Unit- V	<p>Special Purpose Machines (SPM):</p> <p>5.1 Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design.</p> <p>5.2 Maintenance of Machine Tools: Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM).</p>	08

References:

1. Production Technology – HMT, Bangalore, Tata Mc-Graw Hill
2. CNC machines – Pabla B. S. & M. Adithan, New Age international limited.
3. Non-conventional Machining – P. K. Misra, Narvasa Publishing House
4. Manufacturing Processes – Begman & Amsted, John Willey and Sons.
5. Advanced manufacturing technology – David L. Goetsch
6. Exploring Advanced Manufacturing Technologies – Stephen F. Krar& Arthur Gil, Industrial Press

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Know the Operation and control of different advanced machine tools and equipment's. CO2 Produce jobs as per specified requirements by selecting the specific machining process. CO3 Develop the mind set for modern trends in manufacturing and automation.
- CO4 Identify the different fabrication methods viz., sheet forming, blow moulding, laminating and reinforcing of plastics.
- CO5 Know different non-traditional machining processes, CNC milling machines, special purpose machines.
- CO6 Work as maintenance engineer

Open Elective I

ENERGY CONSERVATION & AUDIT

Subject Code 2025604A	Theory			No of Period in one session: 56			Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
				CT	:	20	

Course Learning Objectives:

- To Identify demand supply gaps in present scenario.
- To understand conservations approaches to an industry.
- To draw the energy flow diagram of an industry.
- To identify energy wastage and suggest alternative methods.
- To understand the concepts energy audit.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	1.1 Introduction: General problem, Sector wise consumption, demand sap, Scope for conservation and its benefit 1.2 Energy Efficiency Principle – Maximum energy efficiency, Maximum cost effectiveness; Mandatory provisions of EC act; Features of EC act-Standards And labeling, designated consumers, Energy Conservation Building Codes (ECBC);	10
Unit-II	2.1 Energy Conservation Approaches In Industries: Methods and techniques of energy conservation in ventilation and airconditioners. 2.2 Compressors pumps, fans and blowers - Area Sealing, Insulating the Heating/ cooling fluid pipes, automatic door closing- Air curtain, Thermostat/Control; Energy conservation in electric furnaces, ovens and boilers.	08
Unit-III	3.1 Energy Conservation Option: New equipment, technology, staffing, training; 3.2 Calculation and costing of energy conservation project; Depreciation cost, sinking fund method. Cost evaluation by Return On Investment(ROI) and pay back method etc.	08
Unit-IV	4.1 Performance improvement of existing power plant: cogeneration, small hydro, DGSet; Demand side management; Load response programmes; 4.2 Types of tariff and restructuring of electric tariff Technical measures to optimize T and D losses.	08
Unit- V	5.1 Energy Audit: Energy audit and its benefits; Energy flow diagram; Preliminary, Detailed energy audit; Methodology of preliminary energy audit and Detailed energy audit– Phase I, Pre-audit, Phase II- Audit and Phase III- Post audit; Energy audit report; Electrical Measuring Instruments Power Analyzer.	08

Reference Books:

1. Electric Energy Generation, Utilisation and Conservation Sivaganaraju, S Pearson, New Delhi, 2012
2. Project Management, Prasanna Chandra, Tata Mcgraw Hill, New Delhi
3. O.P.Jakhar, Energy Conservations in Buildings, Khanna Publishing House, New Delhi
4. Financial Management, Prasanna Chandra Tata Mcgraw Hill, New Delhi.
5. Energy management Handbook, Prasanna Chandra, Tata Mcgraw Hill, New Delhi.
6. O.P.Gupta, Energy Technology, Khanna Publishing House, New Delhi (ed. 2018)

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Identify demand supply gaps in the present scenario.
- CO2 Understand the conservation approaches for an industry.
- CO3 Draw the energy flow diagram of an industry and identify waste stream.
- CO4 Identify energy wastage and suggest alternative methods.
- CO5 Evaluate the concepts of energy audit.

Disaster Management

Subject Code 2015604B	Theory			No of Period in one session: 42		Credits 03
	No. of Periods Per Week			Full Marks	: 100	
	L	T	P/S	ESE	: 70	
	03	—	—	TA	: 10	
				CT	: 20	

Course Objectives:

Following are the objectives of this course:

- To learn about various types of natural and man-made disasters.
- To know pre and post disaster management for some of the disasters.
- To know about various information and organizations in disaster management in India.
- To get exposed to technological tools and their role in disaster management.

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	Understanding Disaster: <ul style="list-style-type: none"> • Understanding the Concepts and definitions of Disaster, Hazard, Vulnerability, Risk, Capacity– Disaster and Development, and disaster management. 	06
Unit-II	Types, Trends, Causes, Consequences and Control of Disasters: <ul style="list-style-type: none"> • Geological Disasters (earthquakes, landslides, tsunami); Hydro- Meteorological Disasters (floods, cyclones, lightning, thunder-storms, hail storms, avalanches, droughts, cold and heat waves) Biological Disasters (epidemics, pest attacks, forest fire); • Technological Disasters (chemical, industrial, radiological, nuclear) and Manmade Disasters (building collapse, rural and urban fire, road and rail accidents, nuclear, radiological, chemicals and biological disasters) Global Disaster Trends – Emerging Risks of Disasters– Climate Change and Urban Disasters. 	10
Unit-III	Disaster Management Cycle and Framework: <ul style="list-style-type: none"> • Disaster Management Cycle – Paradigm Shift in Disaster Management. Pre- Disaster – Risk Assessment and Analysis, Risk Mapping, zonation and awareness. • During Disaster – Evacuation – Disaster Communication – Search and Rescue – Emergency Operation Centre – Incident Command System – Relief and Rehabilitation • Post-disaster – Damage and Needs Assessment, Restoration of Critical Infrastructure– Early Recovery – Reconstruction and Redevelopment. 	10
Unit-IV	Disaster Management in India: <ul style="list-style-type: none"> • Disaster Profile of India – Mega Disasters of India and Lessons Learnt. Disaster Management Act 2005. • National Policy on Disaster Management, National Guidelines and Plans on Disaster Management. • Role of Government (local, state and national), Non-Government and Inter Governmental Agencies 	10
Unit-V	Applications of Science and Technology for Disaster Management: <ul style="list-style-type: none"> • Geo-informatics in Disaster Management (GIS, GPS and RS). Disaster Communication System (Early Warning and Its Dissemination). • S&T Institutions for Disaster Management in India. 	06
	Total	42 hrs.

References:

1. Publications of National Disaster Management Authority (NDMA) on Various Templates and Guidelines for Disaster Management
2. Bhandani, R.K., An overview on natural & manmade disasters and their reduction, CSIR, NewDelhi
3. Srivastava, H.N.,and Gupta G.D., Management of Natural Disasters in developing countries, Daya Publishers, Delhi
4. Alexander ,David ,Natural Disasters ,Kluwer Academic London
5. Ghosh ,G.K., Disaster Management ,APH Publishing Corporation
6. Murthy,D.B.N.,Disaster Management :Text & Case Studies , Deep & Deep Pvt. Ltd.

Course outcomes:

After completing this course, student will be able to:

CO : 1 Acquaint with basic information on various types of disasters

CO : 2 Know the precautions and awareness regarding various disasters

CO : 3 Decide first action to be taken under various disasters

CO : 4 Familiarize with organization in India which are dealing with disasters

CO : 5 Select IT tools to help in disaster management

Open Elective-II / COE
INDIAN CONSTITUTION

Subject Code 2000605A	Theory			No of Period in one session: 42			Credits 02
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course Learning Objectives:

Following are the objectives of this course:

- To Enable the student to understand the importance of constitution
- To understand the structure of executive, legislature and judiciary
- To understand philosophy of fundamental rights and duties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court, controller and auditor general of India and election commission of India.
- To understand the central and state relation, financial and administrative

CONTENTS: THEORY

Unit	Name of Topics	Hrs
Unit-I	The Constitution - Introduction <ul style="list-style-type: none"> • The History of the Making of the Indian Constitution • Preamble and the Basic Structure, and its interpretation • Fundamental Rights and Duties and their interpretation • State Policy Principles 	08
Unit-II	Union Government <ul style="list-style-type: none"> • Structure of the Indian Union • President – Role and Power • Prime Minister and Council of Ministers • Lok Sabha and Rajya Sabha 	10
Unit-III	State Government <ul style="list-style-type: none"> • Governor – Role and Power • Chief Minister and Council of Ministers • State Secretariat 	08
Unit-IV	Local Administration <ul style="list-style-type: none"> • District Administration • Municipal Corporation • Zila Panchayat 	08
Unit-V	Election Commission <ul style="list-style-type: none"> • Role and Functioning • Chief Election Commissioner • State Election Commission 	08
		Total 42 hrs

References:

1. Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 2008
2. The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)
3. Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Third 2018 edition

Suggested Software/Learning Websites:

- a. <https://www.constitution.org/cons/india/const.html>
- b. <http://www.legislative.gov.in/constitution-of-india>
- c. <https://www.sci.gov.in/constitution>
- d. <https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of-india/>

Course Outcomes:

After completing this course, student will be able to:

CO 1 : To Enable the student to understand the importance of constitution

CO 2 : To understand the structure of executive, legislature and judiciary

CO 3 : To understand philosophy of fundamental rights and duties

CO 4 : To understand the autonomous nature of constitutional bodies like Supreme Court and high court, controller and auditor general of India and election commission of India.

CO 5 : To understand the central and state relation, financial and administrative

Subject Code 2025605B	Theory			No of Period in one session: 42			Credits 02
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course objectives:

- To understand and analyze managerial problems in industry so that they are able to use resources (capitals, materials, staffing, and machines) more effectively.
- To acquire knowledge of formulating mathematical models for quantitative analysis of managerial problems in industry.

CONTENTS: THEORY

Unit	Name of Topics
—	—
Unit-I	1.1 Development: Definition, Characteristics and phase of Scientific Method, Types of models; 1.2 General methods for solving operations research models.
Unit-II	2.1 Allocation: Introduction to linear programming formulation, graphical solution. 2.2 Simplex Method, artificial variable technique, Duality principle. Sensitivity analysis.
Unit-III	3.1 Transportation Problem: Formulation; Optimal solution; Unbalanced Transportation problems; Degeneracy; 3.2 Assignment problem: Formulation; Optimal solution.
Unit-IV	4.1 Sequencing: Introduction; Terminology; Notations and Assumptions; Problems with n- jobs and two machines; Optimal sequence algorithm; Problems with n- jobs and three machines.
Unit-V	5.1 Theory of games: Introduction; Two- person zero-sum games; The Maximum– Minimax principle; Games without saddle points; Mixed Strategies; 2 x n and m x 2 Games; 5.2 Graphical solutions; Dominance property; Use of L.P. to games

Reference Books:

1. Operations Research: Principles and Applications - G.Srinivasan, PHI Learning Private Limited.
2. Operations Research: An Introduction - Hamdy A. Taha, Pearson.
3. Operations Research: Principles and Practice - Ravindran, Phillips and Solberg, Wiley India
4. Operations Research: Concepts and Cases - Hillier and Liberman, McGraw-Hill

Course outcomes: At the end of the course, the student will be able to:

CO1 Recognize the importance and value of Operations Research and mathematical modeling in solving practical problems in industry.

CO2 Formulate a managerial decision problem into a mathematical model.

CO3 Understand Operations Research models and apply them to real-life problems.

CO4 Understand and implement the Transportation Models and Assignment Models at work- place.

CO5 Understand the characteristics of different types of decisions.

PROJECT MANAGEMENT

Subject Code 2015605B	Theory			No of Period in one session: 42			Credits 02
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	ESE	:	70	
	03	—	—	TA	:	10	
	—	—	—	CT	:	20	

Course Objectives:

Following are the objectives of this course:

- To develop an understanding of key project management skills and strategies.
- To make them understand the concepts of Project Management for planning and execution of projects.
- To make them understand the feasibility analysis in Project Management and network analysis tools for cost and time estimation.
- To enable them to comprehend the fundamentals of Contract Administration, Costing and Budgeting.
- To make them capable to analyze, apply and appreciate contemporary project management tools and methodologies in Indian context.

CONTENTS: THEORY

Unit	Name of Topics	Hrs.
Unit-I	Concept of a project: <ul style="list-style-type: none"> • Classification of projects- importance of project management- The project life cycle, establishing project priorities (scope- cost-time) project priority matrix- work break down structure. 	05
Unit-II	Capital budgeting process: <ul style="list-style-type: none"> • Planning, Analysis, Selection, Financing Implementation- Review. Generation and screening of project ideas-market and demand analysis, Demand forecasting techniques. Market planning and marketing research process- Technical analysis 	10
Unit-III	Financial estimates and projections: <ul style="list-style-type: none"> • Cost of projects-means of financing- estimates of sales and production, cost of production-working capital requirement and its financing- profitability projected cash flow statement and balance sheet. Break even analysis. 	07
Unit-IV	Basic techniques in capital budgeting: <ul style="list-style-type: none"> • Non discounting and discounting methods- pay- back period- Accounting rate of return-net present value- Benefit cost ratio- internal rate of return. Project risk. Social cost-benefit analysis and economic rate of return. Non-financial justification of projects. 	08
Unit-V	Project administration: <ul style="list-style-type: none"> • Progress payments, expenditure planning, project scheduling and network planning, use of Critical Path Method (CPM), schedule of payments and physical progress, time-cost trade off. • Concepts and uses of PERT cost as a function of time, Project Evaluation and Review Techniques, cost mechanisms. Determination of least cost duration. Post project evaluation. 	12
	Total	42 hrs.

References:

1. Project planning, analysis, selection, implementation and review – Prasanna Chandra – Tata McGraw Hill
2. Project Management – the Managerial Process – Clifford F. Gray & Erik W. Larson - McGraw Hill
3. Project management - David I Cleland - McGraw Hill International Edition, 1999
4. Project Management – Gopala Krishnan – McMillan India Ltd.
5. Project Management-Harry-Maylor-Pearson Publication

Course outcomes:

At the end of the course, the student will be able to:

CO 1 : Understand the importance of projects and its phases.

CO 2 : Analyze projects from marketing, operational and financial perspectives.

CO 3 : Evaluate projects based on discount and non-discount methods.

CO 4 : Develop network diagrams for planning and execution of a given project

A) Course Code : **2000605B/2000608B/2000611B**
B) Course Title : Artificial Intelligence (Advance)
C) Pre- requisite Course(s) : Artificial Intelligence (Basic)
D) Rationale :
In Artificial Intelligence (Basic) course, students have learned the basics for Artificial Intelligence problem solving techniques, data analytics and articulates the different dimensions of these areas. This Artificial Intelligence (Advance) course offers the students the comprehension of Machine learning which is a subset of artificial intelligence in the field of computer. The course also exposes students to Tens or flow a Python-based open-source library for numerical computation used in machine learning and developing neural networks. After completing the course students will be able to implement various techniques used in machine learning and neural networks using open-source tools.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/workshop/field/ industry.

After completion of the course, the students will be able to-

CO-1 Elaborate the use of Machine learning in Artificial Intelligence.
CO-2 Implement various supervised and unsupervised learning models and methods.
CO-3 Illustrate Artificial neural networks and its applications.
CO-4 Implement various Neural network models and Learning Methods.
CO-5 Solve machine learning and artificial neural network problems using Tens or flow.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes(COs)	Programme Outcomes(POs)							Programme Specific Outcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	-	2	2	-	-	-	1		
CO-2	3	3	3	3	-	-	2		
CO-3	-	3	3	3	-	-	2		
CO-4	3	1	3	3	-	-	2		
CO-5	3	3	3	3	-	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

***:** PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Boar dof Study	Cours e Code	Cours e Title	Scheme of Study (Hours/Week)					
			Classroom Instructio n(CI)		Lab Instructio n(LI)	Notiona lHours (TW+ SL)	Total Hour s (CI+LI+TW+ SL)	Tota l Credi t (C)
			L	T				
	2000605 B/20006 08B/200 0611B	Artificial intelligence (Advance)	03	-	04	02	09	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times \text{Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Boar dof Stu dy	Course Code	Cour se Titl e	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)	
			Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessme nt(LA)			
			Progres sive Theo ry Assess ment (PTA)	End Theo ry Assess ment (ETA)	Internal	External	Progres sive Lab Assess ment (PLA)	End Laboratory Assess ment (ELA)		
	2000605 B/20006 08B/200 0611B	Artificial Intelligenc e (Advance)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the

attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant CoS Number (s)
TSO 1a. Describe the basic terminology of Machine learning TSO 1b. Explain the concept of dataset and ways to handle them TSO 1c. illustrate the process of dataset division TSO 1d. Explain process involved in machine learning	Unit – 1: Introduction to machine learning Concept of Machine Learning, Define Learning, Learn the Network, Evaluate the Network, datasets and ways to handle them, Feature sets, Dataset division: test, train and validation sets, cross validation. Applications of Machine Learning, processes involved in Machine Learning	CO-1
TSO 2a. Identify the category or class of a particular dataset using KNN algorithm TSO 2b. Use Linear regression for predictive analysis TSO 2c. Predict the categorical dependent variable using Logistic Regression TSO 2d. Use SVM for classification problems in Machine Learning TSO 2e. determine the performance of the classification models TSO 2f. evaluate the performance of the classification model using ROC-curve TSO 2g Explain characteristics of Unsupervised learning. TSO 2h. Explain different clustering methods TSO 2i. Implement K-means clustering algorithm to group the unlabeled dataset	Unit 2: Supervised and unsupervised learning Supervised learning: Introduction to Supervised Learning, K-Nearest Neighbor, Linear Regression, Logistic Regression, Support Vector Machine (SVM), Evaluation Measures: confusion matrix, precision, recall, ROC-Curve (Receiver Operating Characteristic curve) Unsupervised learning: Introduction to Unsupervised Learning, Introduction to clustering, Types of Clustering: Hierarchical, Agglomerative Clustering and Divisive clustering; Partitional Clustering - K-means clustering, Expectation-Maximization (EM) Algorithm	CO-2
TSO 3a. Explain Structure and working of Biological Neural Network. TSO 3b. Differentiate between Artificial Neural Network and Biological Neural Network TSO 3c. State key historical points in development of ANN TSO 3d. Explain the architecture of an artificial neural network	Unit 3: Introduction to neural networks Structure and working of Biological Neural Network, Fundamentals of Artificial Neural Networks & Applications, Characteristics of Artificial Neural Networks, History of neural network research, characteristics of neural networks terminology.	CO-3
TSO 4a. Use neuron McCulloch – Pitts model in designing logical operations TSO 4b. Apply Rosenblatt's Perceptron to solve linear classification problems	Unit 4: Neural networks models and Learning Methods Models of neuron McCulloch – Pitts model,	CO-4

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
TSO 4c. Implement Adaptive Linear Neuron (Adaline) training algorithm in neural network TSO 4d. Use Backpropagation neural training algorithm TSO 4e. Use ART (Adaptive Resonance Theory) learning model TSO 4f: Implement Bidirectional Associative Memory (BAM) model in Artificial Neural Network	Rosenblatt's Perceptron, Adaline model, Basic learning laws, Topology of neural network architecture, Multilayer Neural Networks, Learning Methods, Backpropagation, Counter propagation, Adaptive Resonance Theory (ART), Associative memories, BAM.	
TSO 5a. Illustrate the features of Tens or flow TSO 5b. Manipulate tensors TSO 5c. Explain features of Tens or Board visualization TSO 5d Explain the concept and features of Tens or flow playground	Unit-5 Tensor flow features of TensorFlow, Tensor Data structure- Rank, shape, type, one dimension and two-dimension tensor, Tensor handling and manipulations, Tensor board visualization- symbols Tensors, Variables, Automatic differentiation, Graphs and tf.function, modules layers and models, training loops, features of Tens or flow playground- data ,the ration of train and test data, features, hidden layers, Epoch, learning rate, activation function, regularization, problem type	CO-5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical: (2000608B)

Practical/Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Implement data classification algorithms	1	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.	CO-2
LSO 2.1 Implement Machine learning algorithms LSO 2.2 Evaluate the performance of classification model	2	(a) Implement SVM for Iris Dataset- download the dataset from (https://gist.github.com/netj/8836201) (b) Find confusion matrix and evaluation matrix for SVM Hint: SVM model can be constructed using sklearn command, import pandas as pd from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score 1. Read the csv Iris dataset file 2. Condition the data 3. Condition the training and Testing data 4. Construct the Linear model 5. Test the model with Linear kernel 6. Prepare confusion matrix 7. prepare Classification Report	CO-2

Practical/Lab SessionOutcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 3.1 Perform clustering operations using k-means algorithm	3	a) Explore k-means algorithm for the small sample dataset. b) Explore k-means algorithm for Iris Dataset	CO-2
LSO 4.1 Perform clustering operations using EM algorithm	4	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.	CO-2
LSO 5.1 Build artificial neural network LSO 5.2 Test artificial neural network	5	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.	CO-4
LSO 6.1 Detect features or business intelligence in the input data using perceptron	6	Implement the perceptron algorithm from scratch in python.	CO-4
LSO 7.1 Use Tensors for given problems	7	Write a programme to implement two dimension and three-dimension Tensor.	CO5
LSO 8.1 Use basic features for tensor handling and manipulations	8	Write a programme to add and multiply two 4x4 matrix, you can Import “tens or flow” and “numpy”.	CO5
LSO 9.1 Test artificial intelligence (AI) algorithms through the use of Google's TensorFlow machine learning libraries.	9	Solve a classification problem on the Tens or flow playground. Hint: refer https://www.educba.com/tensorflow-playground/	CO5
LSO 10.1 Implement artificial intelligence(AI) algorithms through the use of Google's TensorFlow machine learning libraries LSO 10.2 perform predictive analysis using linear regression	10	Implement algorithm for linear regression in tens or flow	CO5, CO2

L) Suggested Term Work and Self Learning (2000611B): Some sample suggested assignments, micro project and other activities are mentioned here for reference.

- a. Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
- b. Micro Projects:**
Use python programming for the solutions of Microproject problems
 1. (a) Create a Bar plot to get the frequency of the three species of the Iris data.
(b) Create a Pie plot to get the frequency of the three species of the Iris data.
(c) Write a Python program to create a graph to find relationship between the sepal length and width.
 2. (a) Write a Python program to split the iris dataset into its attributes (X) and labels (y). The X variable contains the first four columns (i.e. attributes) and y contains the labels of the dataset.
(b) Write a Python program using Scikit-learn to split the iris dataset into 70% train data and 30% test data. Out of total 150 records, the training set will contain 120 records and the test set contains 30 of those records. Print both datasets.
 3. Conduct performance analysis of Classification Algorithms (any 2) on a specific dataset.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be assessed to calculate CO attainment.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/MidSem Test	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignments	Micro Projects	Other Activities *		
CO-1	20%	15%	30%	20%	30%	--	--
CO-2	10%	25%	20%	20%	20%	30%	33%
CO-3	30%	25%	30%	20%	20%	--	--
CO-4	20%	20%	20%	20%	30%	30%	33%
CO-5	20%	15%	10%	20%	--	40%	34%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

* : Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

** : Mentioned under point- (N)

: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Classroom Instruction (CI) Hours	Relevant TCOs Number (s)	Total Marks	ETA (Marks)		
				Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0. Introduction to machine learning	7	CO1	11	5	4	2
Unit-2.0. Supervised and unsupervised learning	10	CO2	18	5	6	7
Unit-3.0. Introduction to neural networks	10	CO3	17	5	7	5
Unit-4.0. Neural networks models and Learning Methods	8	CO4	14	3	3	8
Unit-5.0. Tensor flow	10	CO5	10	2	6	2
Total Marks	45		70	20	26	24

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

SN	Laboratory Practical Titles		Relevant COs Number(s)	PLA/ELA		
				Performance		Viva - Voc e (%)
				PRA *	PDA* *(%)	
1.	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.		CO-2	-	80	20
2.	(a) Implement SVM for Iris Dataset- download the dataset from(https://gist.github.com/netj/8836201) (b) Find confusion matrix and evaluation matrix for SVM		CO-2	-	80	20
3.	a) Explore k-means algorithm for the small sample dataset. b) Explore k-means algorithm for Iris Dataset		CO-2	20	70	10
4.	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Python ML library classes/API in the program.		CO-2	-	80	20
5.	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriatedata sets.		CO-4	10	70	20
6.	Implement the perceptron algorithm from scratch in python.		CO-4	10	70	20
7.	Write a programme to implement two dimension and three-dimension Tensor.		CO-5	-	80	20
8.	Write a programme to add and multiply two 4x4 matrix, you can Import “tens or flow” and “numpy”.		CO-5	-	80	20
9.	Solve a classification problem on the Tens or flow playground.		CO-5	20	70	10
10.	Implement algorithm for linear regression in tens or flow		CO-2, CO-5	10	70	20

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ ImplementationStrategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Group Discussion, Portfolio Based Learning, Live Demonstrations in Classrooms, Lab, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

P) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Computer Systems	Desktop Computers with i3 processor, 16 GB RAM, 512 GBHDD	S. No. 1 to 10
2.	Online Python IDE	https://www.online-python.com/	S. No. 1 to 10
3.	Jupyter Notebook	Download from https://jupyter.org/	S. No. 1 to 10
4.	Pip Python package manager	Download Pip 22.3 From https://pypi.org/project/pip/	S. No. 1 to 10
5.	Google colab	https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/quickstart/beginner.ipynb#scrollTo=DUNzJc4jTj6G	S. No. 1 to 10
6.	Various modules, Libraries and Packages	Tens or flow, NumPy, Pandas, package	S. No. 1 to 10

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Machine Learning using Python	Manaranjan Pradhan, U Dinesh Kumar	Wiley, ISBN-10: 8126579900 ISBN-13: 978-8126579907
2.	Introduction to Machine Learning	Jeeva Jose	Khanna Book Publishing Co. (P) ltd, 2020. ISBN-10: 9389139066 ISBN-13: 978-9389139068
3.	Machine Learning for Dummies	John Paul Mueller and Luca Massaron, For Dummies,	For Dummies; 2nd edition, ISBN-10: 1119724015 ISBN-13: 978-1119724018
4.	Machine Learning	Rajeev Chopra	Khanna Book Publishing Co., 2021 ISBN-10: 9789386173423 ISBN-13: 978-9386173423
6.	Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python	Pramod Singh, Avinashmanure	Apress, 978-1484255605 ISBN-10: 1484255607 ISBN-13: 978-1484255605
7	Artificial Intelligence: Concepts, Techniques and Applications	Alexis Keller	States Academic Press, 2022 ISBN-9781649649245
8	Artificial Intelligence: An Introduction	Jacob Pearson	Willford Press 2022 ISBN 9781682860911
9	Fundamentals of Machine Learning	Mia Williams	Willford Press 2022 ISBN 9781682860920
10	Artificial Intelligence: A Modern Approach	Emilia Stones	Larsen and Keller Education 2022 ISBN 9781641728525

(b) Online Educational Resources:

1. NPTEL Course: Introduction to Machine Learning, Prof. Balaraman Ravindran, IIT Madras
2. <https://www.tensorflow.org/resources/learn-ml>
3. <https://www.tutorialspoint.com/tensorflow/index.htm>
4. <https://www.javatpoint.com/tensorflow>
5. <https://developers.google.com/machine-learning/crash-course/exercises>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

Data Source:

- <https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/>
- <https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data>
- <https://www.kaggle.com/arshid/iris-flower-dataset>
- <https://www.kaggle.com/rohankayan/years-of-experience-and-salary-dataset>

S) Course Curriculum Development Team (NITTTR, Bhopal)

- Dr. Sanjay Agrawal (Coordinator)
- Dr. R. K. Kapoor (Co-coordinator)

A) Course Code : **2000605C/2000608C/2000611C**
B) Course Title : Internet of Things (Advance)
C) Pre- requisite Course(s) : IoT (Basics), Computer Networks
D) Rationale :

The rise and rise of IoT technologies is redefining business opportunities and process. This has led to a growing need to learn advance skills to remain competitive in the market. Put together, these are a potent combination of technologies that will dictate how our future is written, which is a strong indicator of rewarding job opportunities in those domains. Introduction of the Advanced IoT follows a rigorous curriculum which blends the academic excellence and industry-relevant applications.

This course will be exposed to a breadth of skills which will help students to become multi-faceted software engineers with a deeper understanding of these modern technologies, their applications, and interdependence.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able

to-CO-1 Use basic Python features in Programming.
CO-2 Use advance Python features in Programming.
CO-3 Explain features of Cloud and IoT data storage on it.
CO-4 Explain IoT Networking and its application.
CO-5 Develop IoT App for the given problem

F) Suggested Course Articulation Matrix (CAM):

Course Outcome s(COs)	Programme Outcomes(POs)							Programme Specific Outcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	3	2	2	-	2	-		
CO-2	3	3	2	2	-	2	-		
CO-3	1	-	3	2	2	2	2		
CO-4	1	-	2	3	-	2	2		
CO-5	3	3	3	2	2	3	3		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Boar dof Study	Cours e Code	Cours e Title	Scheme of Study (Hours/Week)					
			Classroo m Instructio n (CI)		Lab Instructio n(LI)	Notiona lHours (TW+ SL)	Total Hour s (CI+LI+TW+S L)	Total Credit s(C)
			L	T				
	2000605 C/200060 8C/20006 11C	IoT (Advance)	03	-	04	02	09	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, Online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times \text{Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Boar dof Study	Course Code	Cours e Title	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)	
			Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessme nt(LA)			
			Progres sive Theo ry Assess ment (PTA)	End Theo ry Assess ment (ETA)	Internal	External	Progres sive LabAssess ment (PLA)	End Laboratory Assessment		
	2000605 C/200060 8C/200 0611C	IoT (Advance)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction

(LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs)

upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
TSO.1. a. Write the steps to install Python. TSO.1. b. Explain given types of variables in python. TSO.1.c. Explain use and importance of Tuple, Dictionary, operators in python TSO.1. d. Explain use of array in python. TSO.1. e. Explain use of 2-Dimensional Array in python TSO.1. f Explain uses of given type of Conditionalstatement in python.	Unit-1.0 Python basics: - 1.1 Installation of Python 1.2 Variables, Print () function, Escape character sequence and run python Program 1.3 Python Tuple, Dictionary, operators 1.4 Python arrays, create, reverse and append data into it. 1.5 Python 2 Dimensional arrays. 1.6 Python Conditional statement.	CO-1 and CO-5
TSO.2. a. Explain uses of given type of do & whileloops in python TSO.2. b. Explain working of break, continue and pass statement in python TSO.2.c. Write the benefits of using OOPmethodology in python. TSO.2.d.Explain given type of string operation relatedto python. TSO.2.e.Explain given function in python TSO.2.f Explain use of Lambda function in python.	Unit 2. Python Advance: - 2.1 Python Do & while loops 2.2 Python break, continue, pass statements 2.2 Python OOPs Class, Object, Inheritance and Constructor 2.4 Python Strings Replace, Join, Split, Reverse, Uppercase, Lowercase, count, find, split and length 2.5 Python Functions, Built-in functions and user defined functions 2.6 Lambda function and uses	CO-1 and CO5
TSO.3.a. Differentiate between Cloud and IoT cloud. TSO.3.b. Explain features of Cloud in IoT environment TSO.3.c. List features of various types of Cloud TSO.3.d. List features of cloud services like SaaS, PaaS and IaaS TSO.3.f List advantages of cloud data storage. TSO.3.g Explain Arduino architecture and its applications. TSO.3.h Explain Raspberry pi architecture and its applications.	Unit-3.0 Cloud features: - 3.1 Cloud computing and IoT cloud 3.2 Benefits of cloud in IoT 3.3 Types of Cloud public, private and hybrid 3.4 Cloud services like SaaS, PaaS and IaaS 3.5 Cloud connectivity and Data storage on Cloud. 3.6 Arduino: Architecture, Programming, and Applications 3.7 Raspberry Pi Architecture, Programming, and Application basic level for IoT applications	CO-1, CO-2 and CO-5
TSO.4.a. Explain wired network TSO.4.b.Explain short range wireless network TSO.4.c.Explain M2M communication TSO.4.d.Explain various generation of wireless network TSO.4.e.Explain the importance of LWPAN in IoT TSO.4.f Differentiate between SigFox & LoRaWANT TSO.4.g Explain use of NB-IOT (Narrow Band IOT) TSO.4.h Create heterogenous network using RFID.	Unit.4 IoT Networking and Application: - 4.1 Wired and short-range wireless network 4.2 M2M – 2G, 3G, 4G & 5G networks 4.3 LPWAN – Low Power Wide Area Networks 4.4 SigFox & LoRaWAN. 4.5 NB-IOT (Narrow Band IOT) 4.6 RFID and Bar code basics- Components of an RFIDsystem-Data -Tags-Antennas- Connectors- Cables- Readers- encoder/ printers for smart labels- Controllers software 4.7 RFID advantages over Bar codes.	CO-1 and CO-4
TSO.5.a. Identify suitable framework for IoT app development	Unit. 5 IoT App Development: - 5.1 Framework selection for IoT app development	CO-4 and

		CO-5
--	--	-------------

Major Theory Session Outcomes (TSOs)	Units	Relevant tCOs Number(s)
TSO.5.b. Identify various stages of selected app TSO.5.c. Develop the app. TSO.5.d. Implement and deploy the app TSO.5.e Maintain and improve the app based on the feedback	5.2 Identify stages of app to be developed. 5.3 Develop, Implement, and Deploy the App 5.4 Testing and Integration 5.5 Maintain and improve	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical (2000608C):

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1 Python installation LSOs 1.2 Prepare and run python program on given problem LSOs 1.3 Prepare python program on Dictionary, Tuple and operators. LSOs 1.4 Prepare program on arrays LSOs 1.5 Prepare a program on 2-dimensional array LSOs 1.6 Create program on conditional statement	1.	1.1 Install given version of Python on the computer system. 1.2 Prepare a python program using print() function and run it. 1.3 Access given value from the tuple 1.4 Print the given value of key from the dict. 1.5 Write a Python program to create an array of 5 integers and display the array items. Access individual element through indexes 1.6 Write a Python program which takes two digits m (row) and n (column) as input and generates a two-dimensional array. 1.7 Write a python program to check whether person is eligible for voting or not. (accept age from the user) 1.8 Write a python program to check whether the entered number is even or odd. 1.9 Write a python program to check whether entered number is divisible by another entered number. 1.10 Write a python program to display “Yes” if entered number is divisible by 5 otherwise display “No”	CO-1
LSOs 2.1 Prepare python program on Do & while loops LSOs 2.2 Prepare python program on break and continue statement. LSOs 2.3 Prepare Python program using break and continue statements LSOs 2.4 prepare python program using OOP LSOs 2.5 Prepare Python program using functions	2.	2.1 Prepare a python program which can print first 10 even and odd numbers using while statement 2.2 Write a python program which can print first 10 integers and its square using while/for loop. 2.3 Write a python program which can print sum of first 10 natural numbers using while/for loop. 2.4 Write a python program which can identify the prime number between the range given using while/for loop. 2.5 Consider a situation where you want to iterate over a string and want to print all the characters until a letter ‘e’ or ‘s’ is encountered. It is specified	CO-2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
		<p>that you have to do this using loop and only one loop is allowed to use.</p> <p>2.6 Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is specified that you have to do this using loop and only one loop is allowed to use.</p> <p>2.7 Create a Class with instance attributes</p> <p>2.8 Create a Vehicle class without any variables and methods</p> <p>2.9 Write a Python function to find the Max of three numbers.</p> <p>2.10 Write a Python program to reverse a string.</p>	
LSO 3.1 Signup for free cloud storage LSO 3.2 Store data into cloud and retrieve it.	3.	3.1 Create a free cloud account 3.2 Store data on cloud and retrieve it	CO-3
LSO 4.1 Design various types of network cables LSO 4.2 Connect computer in LAN. LSO 4.3 Connect devices using wireless network LSO 4.4 Connect machine with machine LSO 4.5 Connect devices using IEEE 802 LSO 4.6 Connect devices using LPWAN LSO 4.7 Connect devices using RFID	4	<p>4.1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.</p> <p>4.2 Connect the computers in Local Area Network</p> <p>4.3 Connect 2 or more devices using Bluetooth</p> <p>4.4 Connect 2 or more devices using infrared</p> <p>4.5 Connect 2 more machine using m2m</p> <p>4.6 Connect 2 or more different devices using access point</p> <p>4.7 Connect 2 devices using LPWAN (SmartMeter)</p> <p>4.8 Connect 2 or more devices using RFID</p>	CO-4
LSO 5.1 Develop a IoT app LSO 5.2 Develop IoT applications using smartphones.	5.	5.1 Identify a problem and develop an app 5.2 Building a temperature monitoring system using sensors and Smartphone	CO-5

L) **Suggested Term Work and Self Learning (2000611C):** Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. **Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Prepare a report on Python programming language.
2. Develop a small software in python to solve a IoT data analysis.
3. Create a id on free cloud storage and share data on it for others.
4. Create a heterogenous network and connect different devices.
5. Create a an IoT app for the identified problem

c. Other Activities:

1. Seminar Topics: - “Future of wireless network.”

2. “Smart electricity billing “, “Cloud computing and IoT”
3. Visit to industry for IoT implementation in industrial process.
4. Reading RFID cards using 8051- RFID in the supply chain- Vehicles parking using RFID- library managementsystem- electronic toll payment- smart shipping containers fleet monitoring and management.
5. Building IoT Applications like pressure, air quality, temperature and motion detector using Arduino and raspberry-pi Universal boards.
6. Surveys of market for availability of various types of network devices and its pricing.
7. Product Development: Development of projects for real life problem solution app.
8. Software Development: Using Python

d. Self-learning topics:

1. Deeper knowledge in Python features
2. Network devices and its capabilities
3. Advantages of IoT implementations

(M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
CO-1	10%	10%	20%	--	33%	10%	20%
CO-2	15%	10%	20%	--	33%	15%	20%
CO-3	30%	30%	20%	--	34%	15%	20%
CO-4	20%	30%	20%	50%	--	30%	20%
CO-5	25%	20%	20%	50%	--	30%	20%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Classroom Instruction(HI) Hours	Relevant COs Number (s)	Total Marks	ETA (Marks)		
				Remember(R)	Understanding(U)	Application& above (A)
Unit-1. Python basics	5	CO1	7	2	2	3
Unit-2. Python Advance	5	CO1, CO2	7	2	2	3
Unit-3. Cloud features	14	CO3	21	8	8	5
Unit-4. Networking and Application	14	CO4, CO3	21	5	7	9
Unit-5. IoT Applications	10	CO5, CO3 and CO4	14	3	6	5
Total Marks	48		70	20	25	25

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA /ELA		
			Performance		Viva - Voce (%)
			PRA* (%)	PDA* (%)	
1.	Install given version of Python the computer system.	CO-1	70	20	10
2.	Prepare a python program using print() function and run it.	CO-1	60	30	10
3.	Access given value from the tuple	CO-1	60	30	10
4.	Print the given value of key from the dict.	CO-1	60	30	10
5.	Write a Python program to create an array of 5 integers and display the array items. Access individual element through indexes	CO-1	60	30	10
6.	Write a Python program which takes two digits m (row) and n (column) as input and generates a two-dimensional array.	CO-1	60	30	10
7.	Write a python program to check whether person is eligible for voting or not. (accept age from the user)	CO-1	60	30	10
8.	Write a python program to check whether the entered number is even or odd.	CO-1	60	30	10
9.	Write a python program to check whether entered number is divisible by another entered number.	CO-1	60	30	10
10.	Write a python program to display “Yes” if entered number is divisible by 5 otherwise display “No”	CO-1	60	30	10
11.	Prepare a python program which can print first 10 even and odd numbers using while statement	CO-2	60	30	10

12.	Write a python program which can print first 10 integers and its square using while/for loop.	CO-2	60	30	10
-----	---	------	----	----	----

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA *	PDA* (%)	
13.	Write a python program which can print sum of first 10 natural numbers using while/for loop.	CO-2	60	30	10
14.	Write a python program which can identify the prime number between the range given using while/for loop.	CO-2	60	30	10
15.	Consider a situation where you want to iterate over a string and want to print all the characters until a letter 'e' or 's' is encountered. It is specified that you have to do this using loop and only one loop is allowed to use.	CO-2	60	30	10
16.	Consider the situation when you need to write a program which prints the number from 1 to 10 and but not 6. It is specified that you have to do this using loop and only one loop is allowed to use.	CO-2	60	30	10
17.	Create a Class with instance attributes	CO-2	60	30	10
18.	Create a Vehicle class without any variables and methods	CO-2	60	30	10
19.	Write a Python function to find the Max of three numbers.	CO-2	60	30	10
20.	Write a Python program to reverse a string.	CO-2	60	30	10
21.	Create a free cloud account	CO-3	70	20	10
22.	Store data on cloud and retrieve it.	CO-3	60	30	10
23.	Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.	CO-4	70	20	10
24.	Connect the computers in Local Area Network	CO-4	70	20	10
25.	Connect 2 or more devices using Bluetooth	CO-4	70	20	10
26.	Connect 2 or more devices using infrared	CO-4	70	20	10
27.	Connect 2 more machine using m2m	CO-4	70	20	10
28.	Connect 2 or more different devices using access point	CO-4	70	20	10
29.	Connect 2 devices suing LPWAN (Smart Meter)	CO-4	70	20	10
30.	Connect 2 or more devices using RFID	CO-4	70	20	10
31.	Identify a problem and develop an app	CO-5	70	20	10

Legend:

PRA*: Process Assessment

PDA**: Product

Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) **Suggested Instructional/ Implementation Strategies:** Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specification	Relevant Experiment/Practical Number
1	Python software	Openly available as per instruction	As mentioned above list
2	Cables connectors and crimping tools	Cat 6e cable, RJ-45 connectors and Crimping Tool	
3	Bluetooth and infrared devices	Any mobile and wireless keyboard and mouse	
4	IoT free cloud	Free available	
5	Smart devices	Like meters, bulbs etc.	
6	Wireless access point	Wireless router or access point	
8	Arduino development board	Arduino Uno and Arduino Nano.	
6	Raspberry Pi	Raspberry Pi 4/ Raspberry Pi 3/ Raspberry Pi 2	

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1	Let Us Python	Kanetkar Yashavant	BPB Publications ISBN: 9789388511568, 9789388511568
2	IOT (Internet of things) and Its Application	P K Pandey	T Balaji Publication (1 January 2020) ISBN-10: 8194136385 ISBN-13: 978-8194136385
3	Raspberry Pi Cookbook: Software and Hardware Problems and Solutions	Simon Monk	Shroff/O'Reilly; Third edition (4 October 2019) ISBN-10: 9352139267 ISBN-13: 978-9352139262
4	Raspberry Pi Cookbook: Software and Hardware Problems and Solutions,	Simon Monk	Shroff/O'Reilly; Third edition (4 October 2019) ISBN-10: 9352139267 ISBN-13: 978-9352139262
5	Cloud Computing: Concepts, Technology & Architecture	Erl	Pearson Education India; 1st edition (1 January 2014) ISBN-10: 9332535922 ISBN-13: 978-9332535923
6.	Fundamentals of Internet of Things	Eden Scott	States Academic Press 2023 ISBN 9781649649235

7	Internet of Things	Alaina Wilson	Murphy & Moore Publishing 2023 ISBN 9781649872731
8	Principles of Internet of Things	Hallie Parker	Larsen and Keller Education 2023 ISBN 9781641728312

(b) Online Educational Resources:

1. nptel.iitm.ac.in/courses/.../IIT.../lecture%202023%20and%202024.htm
2. en.wikipedia.org/wiki/Shear_and_moment_diagram
3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
4. www.engineerstudent.co.uk/stress_and_strain.html
5. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf
6. https://www.veritis.com/blog/aws-vs-azure-vs-gcp-the-cloud-platform-of-your-choice/
7. https://wiki.python.org/moin/TimeComplexity
8. www.engineerstudent.co.uk/stress_and_strain.html
9. https://www.iit.edu/arc/workshops/pdfs/Moment_Inertia.pdf

Amini, P. (2014). Sulley: Pure Python fully automated and unattended fuzzing frame- work.
<https://github.com/OpenRCE/sulley>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

1. Learning Packages
2. Users' Guide
3. Manufacturers' Manual
4. Lab Manuals

S) Course Curriculum Development Team (NITTTR, Bhopal)

Dr. M. A. Rizvi (Coordinator)

A) Course Code : **2000605D/2000608D/2000611D**
B) Course Title : Drone Technology (Advanced)
C) Pre- requisite Course(s) : Drone Technology (Basics)
D) Rationale :

In previous semester, a course in drone technology broadly discussed about basic principles, functions and interface of different components and design simple drone structure. In order to understand the successive development of drones / UAVs in terms of their geometric structure, working methodology and navigation control etc., so it is important to study the advanced course on Drone Technology. This course includes the study of Static and dynamic force analysis on drone, advance flying features, navigation control, maintenance and advance applications of different types of drone.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1** Apply the concept of engineering mechanics for stability of drone.
- CO-2** Design the structure of drone using GPS module and thermal Image camera.
- CO-3** Operate drone using advance flight controller board.
- CO-4** Perform drone maintenance and assembly.
- CO-5** Use drone in advance applications like precision agriculture, security, IoT, etc.

F) Suggested Course Articulation Matrix (CAM):

Course Outcome s(COs)	Programme Outcomes(POs)							Programme SpecificOutcomes* (PSOs)	
	PO-1 Basic and DisciplineSpecific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	-	-	-	-		
CO-2	2	2	-	3	3	-	-		
CO-3	2	2	3	3	-	-	-		
CO-4	3	-	-	3	-	-	-		
CO-5	-	2	2	-	-	3	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Boar dof Study	Cours e Code	Cours e Title	Scheme of Study (Hours/Week)					
			Classroo m Instructio n (CI)		Lab Instructio n(LI)	Notiona l Hours (TW+ SL)	Total Hour s (CI+LI+TW+ SL)	
			L	T				
	20006 05D/2 00060 8D/20 00611 D	Drone Technolog y (Advance)	03	-	04	02	09	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times \text{CI hours}) + (0.5 \times \text{LI hours}) + (0.5 \times \text{Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Boar dof Stud y	Course Code	Cours e Title	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)	
			Theory Assessment (TA)		Term Work & Self- Learning Assessment(TWA)		Lab Assessme nt(LA)			
			Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive LabAssessment (PLA)	End Laboratory Assessment (ELA)		
	2000605 D/20006 08D/200 0611D	Drone Technology (Advance)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty

should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction(LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of TheorySession Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs)upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like **Green skills**, **Sustainability**, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must beintegrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number (s)
<p>TSO 1a. Draw free body diagram of quadcopter drone.</p> <p>TSO 1b. Determine centroid of given drone structure.</p> <p>TSO 1c. Determine center of gravity of different drone structure.</p> <p>TSO 1d. Analyze different types of force acting drone system.</p> <p>TSO 1e. Differentiate between static and dynamic force analysis.</p> <p>TSO 1f. Explain how gyroscopic motion keepsdrone balanced and hovering.</p>	<p>Unit-1.0 Engineering mechanics for Dronetechnology</p> <p>1.1 Drone Mechanics</p> <ul style="list-style-type: none"> • Free body diagram of drone • Method of finding resultant of force system • Equilibrium of coplanar force system <p>1.2 Center of Gravity</p> <ul style="list-style-type: none"> • Centroid of plane figure • Center of gravity of solid bodies <p>1.3 Force analysis in drone</p> <ul style="list-style-type: none"> • Force analysis in drone • Forces of flight • Principle axes and rotation of aerial systems <p>1.4 Dynamics of machine</p> <ul style="list-style-type: none"> • Static and dynamic force analysis • Gyroscopic motions 	CO-1
<p>TSO 2a. Describe properties and application of smart materials use in UAV frame.</p> <p>2a.TSO 2b. Calculate the diameter of the propeller for given drone frame size.</p> <p>2b. Determine size of quadcopter frame and diameter of propeller of drone</p> <p>TSO 2c.</p> <p>TSO 2d. Describe working of GPS and its hardware interfacing.</p> <p>TSO 2e. Write steps to interface GPS module for drone navigation.</p> <p>TSO 2f. Describe different RF blocks and antennas used in RF transmitter and receiver.</p>	<p>Unit-2.0 Drone Frame and components</p> <p>2.1 Drone frame design</p> <ul style="list-style-type: none"> <input type="checkbox"/> Calculation principle for drone frame sizes <input type="checkbox"/> Quadcopter frame design <input type="checkbox"/> Smart materials for UAV frame <input type="checkbox"/> Green material uses in drone <p>2.2 Advance Drones component</p> <ul style="list-style-type: none"> • GPS, Interfacing of GPS hardware • Thermal and chemical sensor • Tilt and LiDAR sensor <p>2.3 RF transmitter and receiver</p> <ul style="list-style-type: none"> • RF blocks • RF antennas <p>2.4 Micro-electromechanical systems (MEMS) based sensor</p> <p>2.5 HD and thermal Image camera</p>	CO-2
TSO 3a. Identify features and specifications of FCBuse in different application	Unit-3.0 Advance flight controller Board (FCB)	CO-3

Major Theory Session Outcomes (TSOs)		Units	Relevant COs Number (s)
TSO	Explain ports of any given advance flightcontroller board.	3.1 Specification and ports of FCB	
3b.	Write steps of software installation of flight controller board.	3.2 Software for FCB <ul style="list-style-type: none"> <input type="checkbox"/> Software installation 	
TSO	Describe installation and calibration steps of radio telemetry with FCB.	3.3 Radio Communication with FCB <ul style="list-style-type: none"> <input type="checkbox"/> Installation of Radio Telemetry <input type="checkbox"/> Radio Calibration with FCB 	
3c.TSO	Write steps of calibration of accelerometer and ESC with FCB.	3.4 Calibration of accelerometer	
3d.	Describe interfacing of GPS with FCB.	3.5 Calibration of ESC	
TSO		3.6 Interface of motor with FCB using ESC	
3e.TSO		3.7 GPS interface with FCB	
3f.		3.8 Safety features of advance FCB	
TSO	Describe challenges comes in drone maintenance.	Unit-4.0 Maintenance and assembling of Drone	CO-4
4a.TSO	Describe measuring devices and instrument use in drone maintenance.	4.1 Need and scope of drone maintenance	
4b.	Describe measuring instrument used to measure electrical parameters in drone.	4.2 Types of maintenance	
TSO	Write sequence of steps use in assembling of drone.	4.3 Routine drone maintenance and its checklist <ul style="list-style-type: none"> • Recording basic details • Structural inspection • Battery check • Software/firmware 	
4c.TSO		4.4 Types of measuring instrument use in drone maintenance	
4d.		4.5 Measurement of different electrical parameters related with drone hardware	
		4.6 Assembly of drones <ul style="list-style-type: none"> • Concept of interchangeability • Principle of gauging and their applicability in drone assembly • Parameters and profile measurements of standard propellers • Concepts of drone assembly using 3D modeling 	
TSO	Describe function of autonomous drone using AI.	Unit-5.0 Advance Drone Application	CO-5
5a.TSO	Describe IoT enable UAV for surveillanceand data gathering.	5.1 Application of AI in Drone Technology	
5b.	Explain drone applications based on cost saving, enhanced efficiency and profitability aspects.	5.2 IoT and Computer vision integrated Drone	
TSO		5.3 Drone interface with smart-phone	
5c.		5.4 Drone Applications in <ul style="list-style-type: none"> • Military • Precision Agriculture 	

Note: One major TSO may require more than one theory session/period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical (2000608D):

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 1.1 Use the force of gravity to compute the centre of gravity for a given drone structure.	1.	Determine Centre of gravity of different drone structure.	CO-1
LSO 2.1 Develop skills of observation and interpreting phenomenal changes on Drone model for stability and hovering.	2.	Demonstrate gyroscopic effect on a drone model	CO-1
LSO 3.1 Draw various frame to be required in designing drone structure. LSO 3.2 Use Measuring instrument in designing drone frame. LSO 3.3 Choose suitable materials for making drone frame	3.	Compare different types of airframe structure like quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa + and hexa S).	CO-2, CO-4
LSO 4.1 Identify and measure the condition of sensors. LSO 4.2 Interface Tilt and LiDAR sensors in drone.	4.	Test Tilt and LiDAR sensors and their characteristics with Microcontroller based Flight controller board.	CO-2
LSO 5.1 Identify different component of GPS module LSO 5.2 Measure and use signals from GPS module to determine latitude & longitude. LSO 5.3 Diagnose problems using appropriate instruments/tools related to GPS navigation.	5.	Demonstrate the interfacing of GPS module to drone navigation.	CO-2, CO-3
LSO 6.1 Measure characteristics of HD and thermal Image camera. LSO 6.2 Diagnose common problems related to HD and thermal Image camera.	6.	Test HD and thermal Image camera and their characteristics.	CO-2
LSO 7.1 Identify the characteristics of RF circuit blocks like amplifier, and filters. LSO 7.2 Identity different antennas used. LSO 7.3 Operate drone using RC transmitter and receiver.	7.	Identify, configure and operate 433MHz and 2.4 GHz RC transmitter and receiver.	CO-2
LSO 8.1 Test the different peripheral interconnections with FCB LSO 8.2 Troubleshoot advance Flight control board (FCB)	8.	Programming and configure of parameters in flight control board (FCB).	CO-3
LSO 9.1 Configure radio communication device to control drones. LSO 9.2 Operate drone using RC transmitter and receiver.	9.	Test and perform communication of advance Flight control board with RF transceiver.	CO-3, CO-2
LSO 10.1 Measure various parameters of GPS system LSO 10.2 Interface GPS system with flight controller board.	10.	Test and perform communication of Flight control board (FCB) with GPS	CO-3, CO-2
LSO 11.1 Configure HD and thermal image camera with drone. LSO 11.2 Demonstrate use of HD and thermal image camera with FCB	11.	Test and troubleshoot HD and thermal image camera with advance FCB in drone.	CO-3, CO-2

LSO 12.1 Measure voltage, current frequency using Digital Multimeter LSO 12.2 Measure peak to peak voltage, time period, and duty cycle using DSO and waveform generator.	12.	Measure various electric parameters in drone hardware	CO-4
--	-----	---	-------------

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSO 12.3 Measure unknown frequency and its level using spectrum analyzer.			
LSO 13.1 Inspect drone as per the given checklist LSO 13.2 Diagnose drone problems after flying of 50 and 100hrs	13.	Perform preventive maintenance of drone components	CO-4
LSO 14.1 Perform dismantle process of drone. LSO 14.2 perform services need for operation LSO 14.3 Check and Install different parts of the drone system. LSO 14.4 Assemble drone component.	14.	Dismantle and service of different parts of drone system	CO-4

L) Suggested Term Work and Self Learning (2000611D): Some sample suggested assignments, micro project and other activities are mentioned here for reference.

- a. Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
- b. Micro Projects:**
 1. Prepare maintenance report for small UAV.
 2. Survey nearby electronics shop and Prepare report on types of drone frames and drone sensors available and its specification.
 3. Prepare report of surveying & mapping of our institute using drone with HD and thermal image camera.
 4. Prepare report on land and crops quality of nearby agriculture field using drone.
 5. Prepare report on Identify and select different application drones like agriculture, Surveillance, Inspections and gathering Information for disaster management.
 6. Download 5 videos on advance FCB of drone design. Watch them and write report on it.
 7. Market survey on different types of FCB, its specification and specific application and prepare report.
 8. Develop mission completion drone with the help of GPS based Advance FCB.
- c. Other Activities:**
 1. Seminar Topics-Drone stability using gyroscopic motion, Quadcopter frame, Green material use in drone design, GPS based drones, types of HD and thermal Image camera, Safety features in advance drone, Drone Assembling, Military drone.
 2. Visits: Visit nearby small industry, Drone institute facilities. Prepare report of visit with special comments of advance drone technology used, material used, cost of printed component.
 3. Surveys: Survey nearby electronics shop and Prepare report of list of advance drone components and its specification.
 4. Product Development
 5. Software Development
- d. Self-learning topics:**
 1. Different types Drones frame
 2. Overview of GPS technology
 3. Different types of HD and thermal Image camera
 4. Safety features in Drone
 5. Advance drone application

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
Assignment s		Micro Project s		Other Activities*			
CO-1	15%	15%	20%	20%	20%	25%	25%
CO-2	20%	20%	20%	20%	20%	25%	25%
CO-3	25%	25%	20%	20%	20%	25%	25%
CO-4	25%	25%	20%	20%	20%	25%	25%
CO-5	15%	15%	20%	20%	20%	-	-
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Classroom Instruction(Hours)	Relevant COs Number (s)	Total Marks	ETA (Marks)		
				Remember(R)	Understanding(U)	Application & above (A)
Unit 1.0 Engineering mechanics for Drone Technology	8	CO-1	12	04	04	04
Unit 2.0 Drone frame and components	10	CO-2	14	04	04	06
Unit 3.0 Advance Flight Controller Board	12	CO-3	16	04	06	06
Unit 4.0 Maintenance and assembling of drone	10	CO-4	16	04	06	06
Unit 5.0 Advance Drone Application	8	CO-5	12	04	04	04
Total Marks	48		70	20	24	26

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PLA /ELA		
			Performance		Viva - Voc (%)
			PRA *	PDA* (%)	
1.	Determine Centre of gravity of different drone structure.	CO-1	50	40	10
2.	Demonstrate gyroscopic effect on a drone model	CO-1	40	50	10
3.	Compare different types of airframe structure like quadcopter frame (plus shape, cross shape and H-shape), hexacopter frame (hexa + and hexa S).	CO-2	50	40	10
4.	Test Tilt and LiDAR sensors and their characteristics with Microcontrollerbased Flight controller board.	CO-2	50	40	10
5.	Demonstrate the interfacing of GPS module to drone navigation.	CO-2, CO-3	50	40	10
6.	Test HD and thermal Image camera and their characteristics.	CO-2	50	40	10
7.	Identify, configure and operate 433MHz and 2.4 GHz RC transmitter and receiver.	CO-2	60	30	10
8.	Programming and configuration of parameters in flight control board (FCB).	CO-3	60	30	10
9.	Test and perform communication of advance Flight control board with RF transceiver.	CO-3, CO-2	60	30	10
10.	Test and perform communication of Flight control board (FCB) with GPS	CO-3, CO-2	60	30	10
11.	Test and troubleshoot HD and thermal image camera with advance FCB in drone.	CO-3, CO-2	60	30	10
12.	Measure various electric parameters in drone hardware	CO-4	40	50	10
13.	Perform preventive maintenance of drone components	CO-4	60	30	10
14.	Dismantle and service of different parts of drone system	CO-4	60	30	10

Legend:

PRA*: Process Assessment

PDA**: Product

Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specification s	Relevant Experiment/Practical Number
1.	Drone Frame	Tricopter/Quadcopter/Hexacopter	1-15
2.	Propellers	15 X 5.5 CW/Others	1-15
3.	GPS module	M8N Series	1-15
4.	Drone Camera	15-20 Megapixel	1-15
5.	Camera Gimble	3 Axis feature, 360 Degree movement	1-15
6.	Tilt Sensor	8-30 volt	1-15
7.	LiDER sensor	Range 75m to 200m	1-15
8.	Battery	Lithium Polymer Battery,8000 to 10000 mAh	1-15
9.	Motor	BLDC, 370kv	1-15
10.	Electronic speed Controller (ESC)	40 Amp	1-15
11.	Flight Controller Board	CC3D/Pixhawk/Others	1-15
12.	Transmitter and Receiver for radio signal	10 Channels and more, 2.4 GHz & 5.8 GHz	1-15
13.	Embedded system for AI application on UAV	Open Source Jetson Baseboard /Others	1-15

R) Suggested Learning Resources:

(a) Books:

S. No.	Title s	Author (s)	Publisher and Edition with ISBN
1.	Make: DIY Drone and Quadcopter Projects: A Collection of Drone-Based Essays, Tutorials, and Projects	Editors of Make	Shroff/Maker Media, First edition 2016,ISBN-978-9352133994
2.	Make: Getting Started with Drones: Build and Customize Your Own Quadcopter	Terry Kilby & Belinda Kilby	Shroff/Maker Media, First edition 2016,ISBN-978-9352133147
3.	Agricultural Drones: A Peaceful Pursuit	K R Krishna	Apple Academic Press,1st edition 2018,ISBN-978-1771885959
4.	Building Multicopter Video Drones: Build and fly multicopter drones to gather breathtaking video footage	Ty Audronis	Packt Publishing Limited; Illustrated edition,2014, ISBN-978-1782175438
5.	The Complete Guide to Drones	Adam Juniper	Ilex Press, Extended 2nd Edition,2018 ISBN-9781781575383
6.	Unmanned Aircraft Systems - UAVS Design, Development and Deployment (Aerospace Series)	R Austin	John Wiley & Sons Inc, 1st edition, 2010,ISBN-978-0470058190
7	Drone Technology	Miranda Hall	NY Research Press 2023 ISBN 9781632389574

8	Introduction to UAV Systems	Rupert Baker	Willford Press 2023 ISBN 9781682860890
9	Theory, Design, and Applications of Unmanned Aerial Vehicles	Tyler Wood	Larsen and Keller Education 2023 ISBN 9781641728338

(b) Online Educational Resources:

1. <https://archive.nptel.ac.in/courses/101/104/101104083/>
2. https://onlinecourses.nptel.ac.in/noc21_ae14/preview
3. https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
4. <https://fusion.engineering/>
5. <https://robocraze.com/blogs/post/best-flight-controller-for-drone>
6. <https://www.youtube.com/watch?v=lrkFG7G1lPQ>
7. <https://www.youtube.com/watch?v=KjG6FKCNCbM>
8. <https://ardupilot.org/>
9. <https://px4.io/>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

1. Development of an Autonomous IoT-Based Drone for Campus Security, Abdelrahman Mahmoud Gaber, Rozeha A. Rashid, Nazri Nasir, Ruzairi Abdul Rahim, M. Adib Sarijari, A. Shahidan Abdullah, Omar A. Aziz, Siti Zaleha A. Hamid, Samura Ali,2021
2. IoT based UAV platform for emergency services; S. K. Datta, J. L. Dugelay, & C. Bonnet, 2018
3. Development of an Autonomous Drone for Surveillance Application; M. A. Dinesh, S. Santhosh Kumar, J. Sanath, K. N. Akarsh & K. M. Manoj Gowda,2018
4. Autonomous cloud-based drone system for disaster response and mitigation; C. Alex & A. Vijaychandra,2016
5. <https://www.geeetech.com/Documents/CC3D%20flight%20control%20board.pdf>
6. https://www.bhphotovideo.com/lit_files/201146.pdf
7. http://tricopter.hu/docs/cc3d_manual.pdf

S) Course Curriculum Development Team (NITTTR, Bhopal)

- Dr. K. K. Jain (Coordinator)
- Dr. Sanjeet Kumar (Co-coordinator)

A) Course Code : **2000605E/2000608E/2000611E**
B) Course Title : 3D Printing and Design (Advance)
C) Pre- requisite Course(s) : 3D Printing and Design (Basic)
D) Rationale :

This advanced course on 3D Printing tries to develop understanding of the process of making real complex objects from digital models in the students using various 3D printing processes and materials (Plastics, Ceramics and Metals). It also covers the post processing required and details about various printing process and parameters to make a quality 3D printed component. This course can only be taken up after completing 3D Printing and Design (Basic) course offered in previous semester.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

- CO-1** Select newer 3D Printing material for various applications.
- CO-2** Use solid based 3D Printing processes to develop products.
- CO-3** Use liquid-based 3D Printing processes to develop products.
- CO-4** Use powder-based 3D Printing processes to develop products.
- CO-5** Apply post processing techniques and quality checks on 3D printed components.

F) Suggested Course Articulation Matrix (CAM):

Course Outcome(s)(COs)	Programme Outcomes(POs)							Programme Specific Outcomes*(PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	-	-	2	-	2		
CO-2	3	-	2	2	-	-	2		
CO-3	3	-	2	2	-	-	2		
CO-4	3	-	2	2	-	-	2		
CO-5	3	2	-	3	2	-	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Boar dof Study	Cours e Code	Cours e Title	Scheme of Study (Hours/Week)					
			Classroo m Instructio n (CI)		Lab Instructio n(LI)	Notiona l Hours (TW+ SL)	Total Hour s (CI+LI+TW+S L)	Total Credit s(C)
			L	T				
	2000605E /2000608E /2000611E	3D Printing and Design (Advanced)	03	-	04	02	09	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = (1 x CI hours) + (0.5 x LI hours) + (0.5 x Notional hours)

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Board of Study	Course Code	Course Title	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)
			Theory Assessment (TA)		Term Work & Self-Learning Assessment (TWA)		Lab Assessment (LA)		
Progressive Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)				
	2000605E /2000608E /2000611E	3D Printing and Design (Advanced)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p><i>TSO 1a.</i> Explain various forms of 3D printing raw material.</p> <p><i>TSO 1b.</i> Select material for the given popular 3D printing processes with justification.</p> <p><i>TSO 1c.</i> Select various Polymer based 3D printing raw materials with justification.</p> <p><i>TSO 1d.</i> Explain procedure of Powder preparation for the given 3D printing material.</p> <p><i>TSO 1e.</i> Explain properties of the given Metal/Ceramics 3D printing material.</p> <p><i>TSO 1f.</i> Choose suitable 3D printing material on the basis of Performance Requirements and Material Properties.</p>	<p>Unit-1.0 3D Printing Materials</p> <p>1.1 Various forms of 3D printing raw material-Liquid, Solid, Wire, Powder.</p> <p>1.2 Popular FDM, SLA, SLS, Binder Jetting, Material Jetting and Direct Energy deposition 3D printing materials.</p> <p>1.3 Polymers, Metals, Non-Metals, Ceramics.</p> <p>1.4 Polymers and their properties.</p> <p>1.5 Powder Preparation and their desired properties.</p> <p>1.6 Choosing the Right 3D Printing Material on the basis of Performance Requirements and Material Properties.</p>	CO1
<p><i>TSO 2a.</i> Explain working of a typical FDM based 3D Printer.</p> <p><i>TSO 2b.</i> Justify use of FDM based 3D printing process and material for the given component.</p> <p><i>TSO 2c.</i> Explain the Laminated Object Manufacturing process.</p> <p><i>TSO 2d.</i> Estimate the cost and time of the given FDM based 3D printed component.</p>	<p>Unit-2.0 Solid based 3D Printing Processes</p> <p>2.1 Basic principle and working of fused deposition modeling (FDM) process.</p> <p>2.2 Liquefaction, solidification and bonding.</p> <p>2.3 Laminated Object Manufacturing process.</p> <p>2.4 Cost estimation of FDM 3D printed component.</p>	CO1, CO2
<p><i>TSO 3a.</i> Explain the phenomenon of Photo Polymerization.</p> <p><i>TSO 3b.</i> Explain the working of a typical Stereo Lithography based 3D Printer.</p> <p><i>TSO 3c.</i> Explain procedure of 3D Scanning of the given component.</p> <p><i>TSO 3d.</i> Justify use of SLA based 3D printing process and material for the given component.</p> <p><i>TSO 3e.</i> Estimate the cost and time of the given SLA based 3D printed component.</p> <p><i>TSO 3f.</i> Apply Curing process to SLA based 3D printed component.</p>	<p>Unit-3.0 Liquid based 3D Printing Processes</p> <p>3.1 Photo polymerization.</p> <p>3.2 Principle and working of stereo lithography apparatus.</p> <p>3.3 SLA based 3D printing processes.</p> <p>3.4 SLA based 3D printing process materials.</p> <p>3.5 Scanning techniques.</p> <p>3.6 Curing processes.</p> <p>3.7 Cost estimation of SLA 3D printed component.</p>	CO1, CO3

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 4a. Explain powder fusion mechanism.</p> <p>TSO 4b. Explain working of a typical SLA based 3D Printer.</p> <p>TSO 4c. Justify use of SLA based 3D printing process and material for the given component.</p> <p>TSO 4d. Explain Net shape process.</p> <p>TSO 4e. Explain Binder Jet 3D printing process.</p> <p>TSO 4f. Justify use of Binder Jet 3D printing process and material for the given component.</p> <p>TSO 4g. Estimate the cost and time of the given SLS based 3D printed component.</p>	<p>Unit-4.0 Powder based 3D Printing Processes</p> <p>4.1 Powder fusion mechanism.</p> <p>4.2 Principle and working of Selective LaserSintering (SLS) process.</p> <p>4.3 SLS based 3D printers.</p> <p>4.4 Laser Engineering Net Shaping process.</p> <p>4.5 Electron Beam Melting.</p> <p>4.6 Binder Jet 3D Printing.</p> <p>4.7 Materials and Process parameters for SLS based 3D printing processes.</p> <p>4.8 Cost estimation of SLS based 3D printed component.</p>	CO1, CO4
<p>TSO 5a. Justify the need of post processing in the given 3D printed component.</p> <p>TSO 5b. List the various post processing techniques.</p> <p>TSO 5c. List the steps to perform post processing.</p> <p>TSO 5d. Explain the given Cleaning related post processing approach for 3D printed component.</p> <p>TSO 5e. Explain the given Surface finishing related post processing approach for 3D printed component.</p> <p>TSO 5f. Apply simple inspection and testing techniques on the given 3D printed component.</p> <p>TSO 5g. Identify the type of defect(s) in the given 3D printed component.</p>	<p>Unit-5.0 Post Processing and Quality</p> <p>5.1 Need of post processing: Functional and Aesthetic reasons.</p> <p>5.2 Steps of Post Processing: Cleaning/Support removal, Fixing, Curing or hardening, Surfacefinishing, Colouring.</p> <p>5.3 Cleaning: Support Removal (FDM and Material Jetting); Powder Removal (SLS and Powder BedFusion); Washing (SLA and Photo polymerisation).</p> <p>5.4 Fixing: Filling, Gluing, Welding.</p> <p>5.5 Surface finishing: Sanding, Polishing, Tumbling, Hydro dipping, Epoxy coating, Electro Plating, Vapour smoothing-Acetone treatment.</p> <p>5.6 Colouring, Coating, Priming and Painting.</p> <p>5.7 Inspection and testing: Digital, Visual, Physical.</p> <p>5.8 Defects and their causes.</p>	CO1, CO2, CO3, CO4, CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical (2000608E):

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<p>LSO 1.1. Use the available 3D printing software.</p> <p>LSO 1.2. Select printing process parameters based on the type/make of Printer and raw material</p> <p>LSO 1.3. Set printing process parameters.</p> <p>LSO 1.4. Produce a complex component using available FDM Printer.</p>	1.	Develop the assigned digital single complex component using FDM based 3D Printer and available material.	CO1, CO2
<p>LSO 2.1. Use the available 3D printing software.</p> <p>LSO 2.2. Select printing process parameters based on the type/make of Printer and raw material</p> <p>LSO 2.3. Set printing process parameters.</p> <p>LSO 2.4. Produce a complex component using</p>	2.	Develop the assigned digital single complex component using SLA based 3D Printer and available material.	CO1, CO3

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<p>available SLA Printer.</p> <p><i>LSO 2.5.</i> Perform curing of the SLA based 3Dprinted component.</p>			
<p><i>LSO 3.1.</i> Use the available 3D printing software.</p> <p><i>LSO 3.2.</i> Select printing process parameters based on the type/make of Printer and raw material</p> <p><i>LSO 3.3.</i> Set printing process parameters.</p> <p><i>LSO 3.4.</i> Produce a complex component using available SLS Printer.</p>	3.	Develop the assigned digital single complex component using SLS based 3D Printer and available material.	CO1, CO4
<p><i>LSO 4.1.</i> Use the available 3D printing software.</p> <p><i>LSO 4.2.</i> Select printing process parameters based on the type/make of Printer and raw material</p> <p><i>LSO 4.3.</i> Set printing process parameters.</p> <p><i>LSO 4.4.</i> Produce a complex component using available FDM, SLA and SLS Printer.</p> <p><i>LSO 4.5.</i> Perform Cost, Time, Surface finish and Strength estimations related to 3D printed components.</p>	4.	Develop same digital single complex component using FDM, SLA and SLS based 3D Printers and compare the printed componentson the basis of Cost, Time, Surface finish, Strength.	CO1, CO2, CO3, CO4
<p><i>LSO 5.1.</i> Use the available 3D printing software.</p> <p><i>LSO 5.2.</i> Select printing process parameters based on the type/make of Printer and raw material</p> <p><i>LSO 5.3.</i> Select appropriate tolerance, fit and printing process parameters.</p> <p><i>LSO 5.4.</i> Produce an assembly using available SLA/SLS Printer.</p>	5.	Print one digital assembly on SLA/SLS based 3D Printer.	CO2/CO3 /CO4
<p><i>LSO 6.1.</i> Use of available 3D scanner.</p> <p><i>LSO 6.2.</i> Develop 3D digital model using scanningapproach.</p> <p><i>LSO 6.3.</i> Use the available 3D printing software.</p> <p><i>LSO 6.4.</i> Produce a complex component using available SLA Printer.</p>	6.	Scan the given real complex component and print it using FDM/SLA/SLS based 3D Printer.	CO2, CO3, CO4
<p><i>LSO 7.1.</i> Identify tools/devices/chemicals for post processing</p> <p><i>LSO 7.2.</i> Perform post processing operations on printed component.</p>	7.	Apply post processing techniques on the 3D printed component of experiment number 1 and/or 2 and/or 3.	CO5
<p><i>LSO 8.1.</i> Identify tools/devices/techniques for inspection and testing.</p> <p><i>LSO 8.2.</i> Identify the defects in 3D printed components</p> <p><i>LSO 8.3.</i> Apply remedial measures to bring soundness in the defective 3D printed component.</p>	8.	Check the soundness of the 3D printed component of experiment number 1 and/or 2 and/or 3 using available devices/techniques.	CO5

L) **Suggested Term Work and Self Learning (2000611E):** Some sample suggested assignments, micro projectand other activities are mentioned here for reference

a. Assignments: Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

b. Micro Projects:

1. Prepare a list of solid, liquid and powder form 3D printing raw materials stating their cost, colour opacity, flexibility and weight per unit volume.
2. Download 5 videos of 3D printing of different components using FDM, SLA and SLS each. Watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
3. Prepare a report on post processing steps and techniques used for 3D printed components using FDM, SLA, SLS.
4. Prepare a report to compare FDM, SLA, SLS based 3D printing process on the basis of cost, surface finish, printer setting time, printing time and post processing time and cost involved.
5. Download 5 videos of 3D printing processes **other than** FDM, SLA and SLS. Watch them and write a report to detail out the steps involved, 3D Printer used, 3D Printing software used, material used, complexity involved, printing time, post processing steps used.
6. Download 1 video related to inspection and testing of 3D printed components using different techniques like Visual inspection, Scanning Electron Microscopy (SEM), CT system, X-ray, Penetration testing, Infrared thermography, Leak or pressure testing for complex structures, Eddy current, Mechanical property inspection to measure tensile, yield, shear, fatigue, hardness, density, impact strength, Metallography (Microstructure testing). Watch them and write a report to detail out the steps involved and equipment used.

c. Other Activities:

1. Seminar Topics:
 - Newer 3D printing raw materials
 - Direct energy 3D printing process
 - Material jetting 3D printing process
 - Micro 3D printing process
 - Metal and Ceramic 3D printing
 - 3D printing of Jewelry
 - 3D printing of Bio implants
 - Printing of flexible plastic components
2. Visits: Visit nearby tool room/industry with 3D Printing facilities. Prepare report of visit with special comments of 3D printing technique used, material used, single component/batch production/mass production and cost of printed component.
3. Self-learning topics:
 - 3D printing of transparent, soft and flexible plastic components
 - 3D printing of metal components
 - 3D printing of ceramic components
 - 3D scanning process.
 - Chemical post processing techniques

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate **CO attainment**.

	Course Evaluation Matrix		
	Theory Assessment (TA)**	Term Work Assessment (TWA)	Lab Assessment (LA) [#]

COs	Progressive eTheory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Term Work & Self Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignment s	Micro Project s	Other Activities*		
CO-1	15%	15%	15%	-	-	10%	20%
CO-2	20%	20%	20%	25%	25%	25%	20%
CO-3	20%	20%	20%	25%	25%	25%	20%
CO-4	20%	20%	20%	25%	25%	25%	20%
CO-5	25%	25%	25%	25%	25%	15%	20%
Total Marks	30	70	20	20	10	20	30
				50			

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents there reflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Classroom Instruction(CI) Hours	Relevant COs Number(s)	Total Marks	ETA (Marks)		
				Remember(R)	Understanding(U)	Application& above (A)
Unit-1.0 3D Printing Materials	6	CO1	10	3	2	5
Unit-2.0 Solid based 3D Printing Processes	10	CO1, CO2	14	4	5	5
Unit-3.0 Liquid based 3D Printing Processes	10	CO1, CO3	14	4	5	5
Unit-4.0 Powder based 3D Printing Processes	10	CO1, CO4	14	4	5	5
Unit-5.0 Post Processing and Quality	12	CO1, CO2, CO3, CO4, CO5	18	5	5	8
Total	48	-	70	20	22	28

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance PRA* (%)	PDA* (%)	Viva - Voc (%)
1.	Develop the assigned digital single complex component using FDM based 3D Printer and available material.	CO1, CO2	30	60	10

2.	Develop the assigned digital single complex component using SLA based 3D Printer and available material.	CO1, CO3	30	60	10
3.	Develop the assigned digital single complex component using SLS based 3D Printer and available material.	CO1, CO4	30	60	10
4.	Develop same digital single complex component using FDM, SLA	CO1, CO2,	30	60	10

SN	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA* (%)	PDA* (%)	
	and SLS based 3D Printers and compare the printed components on the basis of Cost, Time, Surface finish, Strength.	CO3, CO4			
5.	Print one assembly on SLA/SLS based 3D Printer.	CO2/CO3 /CO4	30	60	10
6.	Scan the given real complex component and print it using FDM/SLA/SLS based 3D Printer.	CO2, CO3, CO4	40	50	10
7.	Apply post processing techniques on the 3D printed component of experiment number 1 and/or 2 and/or 3.	CO5	40	50	10
8.	Check the soundness of the 3D printed component of experiment number 1 and/or 2 and/or 3 using available devices/techniques.	CO5	40	50	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Field Trips, Portfolio Based, Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field Information and Communications Technology (ICT)Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Session, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specification s	Relevant Experiment/Practical Number
1.	High end computers	Processor Intel Core i7 with Open GL Graphics Card, RAM 32 GB, DDR3/DDR4, HDD 500 GB, Graphics Card NVIDIA OpenGL 4 GB, OS Windows 10	All
2.	Parametric Computer Aided Design software	CATIA/Solid works/NX/Creo OR Available with CoE	1 to 5
3.	FDM based 3D printer	Fused Deposition Modelling system with complete accessories; Build Volume-300 x 300 x 300mm or Higher; Layer Thickness-0.1 – 0.4 OR Available with CoE	1,4,5,6
4.	SLA based 3D printer	Printing Technology: SLA, 145 x 145 x 175mm build volume, Common layer thickness 25–100 µm, Dimensional Accuracy \pm 0.5% (lower limit: \pm 0.10 mm), cure time of only 1-3s per layer, Material type: UV-sensitive liquid resin, Curing unit.	2,4,5,6
5.	SLS based 3D printer	Printing Technology: SLS., Build Volume: 130 x 130 x 180 mm, Recommended min. wall thickness: 0.8 mm, Powder Diameter: 60 Microns, Material Type: Nylon, TPU, Light Source: Laser Diode	3,4,5,6
6.	3D Printing Material	ABS/PLA, Resin based Photosensitive material, Polymer/metal/ceramic powder OR Available with CoE	1,2,3,4,5,6
7.	3D Printing software	Latest version of software like: Cura/PrusaSlicer/ideaMaker/Meshmixer/MeshLab OR Available with CoE	1 to 6

8.	3D Scanner and Processing software	Handheld 3D scanner, Accuracy up to 0.1 mm, Resolution up to 0.2 mm, Real time onscreen 3D model projection and processing, Wireless technology with an inbuilt touch screen and battery, Extended field of view for capturing both large and small objects, Processing Software OR Available with CoE	6
----	------------------------------------	---	---

S. No.	Name of Equipment, Tools and Software	Broad Specification s	Relevant Experiment/Practical Number
9.	Post processing equipments and tools	Deburring tools (tool handle & deburring blades), Electronic DigitalCaliper, Cleaning Needles, Art knife set, Long nose pliers, Flush cutters, Wire brush, Nozzle cleaning kit, Tube cutter, Print removalspatula, Needle file, Cutting mat, Glue stick, Wire stripper, Chemicals, Etching agents etc.	7
10.	Inspection and Testing devices	<ul style="list-style-type: none"> Visual inspection, Devices related to: <ul style="list-style-type: none"> Scanning electron microscopy (SEM), CT system, X-ray, Penetration testing, Infrared thermography, Leak or pressure testing for complex structures, Eddy current, Mechanical property inspection to measure tensile, yield, shear, fatigue, hardness, density, impact strength Metallography (Microstructure testing) 	8

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Additive Manufacturing Technologies: RapidPrototyping to Direct Digital Manufacturing	Lan Gibson, David W.Rosen, Brent Stucker	Springer, 2010 ISBN: 9781493921133
2.	Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing	Andreas Gebhardt,	Hanser Publisher, 2011 ISBN: 156990507X, 9781569905074
3.	3D Printing and Design	Sabrie Solomon	Khanna Publishing House, Delhi ISBN: 9789386173768
4.	3D Printing and Rapid Prototyping- Principles and Applications	C.K. Chua, Kah Fai Leong	World Scientific, 2017 ISBN: 9789813146754
5.	Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution	Liza Wallach Kloski, Nick Kloski	Make Community, LLC; 2nd edition, 2021 ISBN: 9781680450200
6.	Laser-Induced Materials and Processes for Rapid Prototyping	L. Lu, J. Fuh, Y.S. Wong	Kulwer Academic Press, 2001 ISBN: 9781461514695
7.	3D Printing: A Practical Guide	Clay Martin	Larsen and Keller Education 2023 ISBN 9781641728323
8.	Fundamentals of 3D Printing	Elizah Brooks	Clanrye International 2023 ISBN 9781647290943
9.	Principles of 3D Printing	Brady Hunter	NY Research Press 2023 ISBN 9781632389549

(b) Online Educational Resources:

1. https://onlinecourses.nptel.ac.in/noc21_me115/preview
2. <https://archive.nptel.ac.in/courses/112/104/112104265/>
3. <https://bigrep.com/post-processing/>
4. <https://www.mdpi.com/2227-7080/9/3/61>
5. <https://all3dp.com/2/best-3d-printing-books/>
6. <https://www.youtube.com/watch?v=TQY2lF-sFaI>

7. <https://www.youtube.com/watch?v=Oz0PoS5LPxg>
8. <https://www.youtube.com/watch?v=6ejjh0GdyDc>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational recourses before use by the students.

(c) Others:

1. 3D Printing Projects DK Children; Illustrated edition, 2017
2. The 3D Printing Handbook: Technologies, design and applications Ben Redwood, Filemon Schöffer, Brian Garret, 3D Hubs; 1st edition, 2017
3. <https://www.imprecision.com/inspection-method-for-3d-printed-parts/>
4. 3D Printer Users' Guide
5. 3D Printer Material Handbook
6. Lab Manuals

S) Course Curriculum Development Team (NITTTR, Bhopal)

- Dr. Sharad Pradhan (Coordinator)
- Dr. A. K. Sarathe (Co-coordinator)

A) **Course Code** : **2000605F/2000608F/2000611F**
 B) **Course Title** : Industrial Automation (Advance)
 C) **Pre- requisite Course(s)** : Industrial automation (Basic)

D) **Rationale** :
 This course on Advanced industrial automation offers students a hands-on approach to implement industrial control using modern controllers like Programmable Logic Controller (PLC), Distributed Control System (DCS)Supervisory Control and Data Acquisition (SCADA). Students will learn to identify and connect field inputs and outputs; communicate with, and program microprocessor-based controllers. Students will also connect, communicate with, and develop displays for computer-based operator interfaces. Process manufacturers typically employ Distributed Control System (DCS) Supervisory Control and Data Acquisition (SCADA) technologies to monitor and control the operations in their facilities. DCS and SCADA systems are now doing much more than simply monitoring and controlling. The course will enable the students to use of basic instructions and addressing, advanced PLC instructions in Ladder Logic and to identify and troubleshoot the faults in PLC system and do PLC maintenance. This course also introduces the students to industrial automation communications, PLC maintenance and troubleshooting also to become a successful automation engineer.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able to-

CO-1. Apply the principles of communication for industrial automation.
CO-2. Test the output of the PLC ladder logic programs for the given application
CO-3. Maintain PLC systems
CO-4. Use SCADA for supervisory control and for acquiring data from the field.
CO-5. Develop simple automation systems

F) Suggested Course Articulation Matrix (CAM):

Course Outcome s(COs)	Programme Outcomes(POs)							Programme SpecificOutcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Developmen tof Solutions	PO-4 EngineeringTools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	2	2	2	2	-	2		
CO-2	3	3	3	3	-	-	2		
CO-3	3	3	3	3	2	2	2		
CO-4	3	2	2	2	2	2	2		
CO-5	3	2	2	3	2	2	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Board of Study	Course Code	Course Title	Scheme of Study (Hours/Week)					
			Classroom Instruction(CI)		Lab Instruction(LI)	Notional Hours (TW+SL)	Total Hours (CI+LI+TW+SL)	
			L	T				
	2000605F/2000608F/2000611F	Industrial Automation (Advance)	03	-	04	02	09	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, Online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times \text{Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Board of Study	Course Code	Course Title	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)	
			Theory Assessment (TA)		Term Work & Self-Learning Assessment(TWA)		Lab Assessment(LA)			
			Progressive Theory Assessment (PTA)	End Theory Assessment	Internal	External	Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)		
	2000605F/2000608F/2000611F	Industrial Automation (Advance)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self -learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self -learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction

(LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO.1a Describe how does a PLC communicate?</p> <p>TSO.1b Differentiate between parallel and series communication</p> <p>TSO.1c Describe the data transfer mechanism for the given communication protocols.</p> <p>TSO.1d Describe the given communication protocol used in PLC communication.</p> <p>TSO.1e Summarize PLC to PLC communication procedure</p> <p>TSO.1f Describe the common procedure to interface the PLC with other given hardware.</p>	<p>Unit-1.0 Industrial automation communication andInterfacing</p> <p>1.1 Analog and Digital Communications on Plant Floors</p> <p>1.2 Introduction to Industrial Networking</p> <p>1.3 RS232-422-485 standards for data communication</p> <p>1.4 Industrial Ethernet</p> <p>1.5 Concept of Fieldbus</p> <p>1.6 MODBUS protocol</p> <p>1.7 Highway Addressable Remote Transducer (HART)Protocol</p> <p>1.8 Interfacing of Programmable Logic Controller with otherhardware</p>	CO-1
<p>TSO.2a Specify the proper I/O addressing format of the given PLC.</p> <p>TSO.2b Explain the use of different relay type instructions for the given operation.</p> <p>TSO.2c Describe how a program is executed with the help of Program Scan cycle</p> <p>TSO.2d Develop ladder logic program using arithmetic functions to perform the given operation.</p> <p>TSO.2e Develop ladder logic programs using logical and comparison instructions to perform the given operation</p> <p>TSO.2f Develop ladder logic programs using on delay, off delay and reset/retentive timer in a given PLC to create a delay in operation.</p> <p>TSO.2g Develop ladder logic programs using Up, Down and UP-down counter in a given PLC to count the number of products</p>	<p>Unit-2.0 PLC Programming</p> <p>2.1 PLC I/O addressing in ladder logic</p> <p>2.2 PLC programming instructions using ladder logic and relay type instructions</p> <p>2.3 Program Scan cycle</p> <p>2.4 PLC arithmetic functions - Addition, subtraction, multiplication, division instructions, increment decrement, trigonometric</p> <p>2.5 PLC logical functions - AND, OR, XOR, NOT functions, PLC compare and convert functions.</p> <p>2.6 Programming Timer –Addressing a timer block, status bits, On delay, Off Delay and reset/retentive timer</p> <p>2.7 Programming Counter- Addressing a counter block, status bits, Up and Down counter, up-down counter, counter examples, register basics</p> <p>2.8 Develop ladder logic for various simple applications</p>	CO-2
<p>TSO.3a Describe Requirements for PLC enclosure.</p> <p>TSO.3b Describe Proper grounding techniques.</p> <p>TSO.3c Describe noise reduction Techniques.</p> <p>TSO.3d Explain preventive maintenance procedure associated with PLC</p>	<p>Unit-3.0 Installation and maintenance of PLC systems</p> <p>3.1 PLC enclosure, grounding requirements, noise generating inductive devices, leaky inputs and outputs, techniques to reduce electrical noise and leakage.</p> <p>3.2 Introduction to PLC Trouble shooting and maintenance, trouble shooting of hardware and software.</p> <p>3.3 Diagnostic LED Indicators in PLCs</p> <p>3.4 Common problems</p>	CO-3

Major Theory Session Outcomes (TSOs)	Units	Relevant tCOs Number(s)
<p>system to reduce environmental impact</p> <p>TSO.3e Identify faults in the given PLC system</p> <p>TSO.3f Explain the procedure for Troubleshooting PLC system</p> <p>TSO.3g Prepare preventive maintenance plan for the PLC system</p> <p>TSO.3h Use safety equipment's.</p> <p>TSO.3i Follow safe practices</p>	<ul style="list-style-type: none"> Internal problems – Check for PLC Power Supply, Emergency Push Button, Power Supply Failure, Battery Failure, Electrical Noise Interference, Verify the PLC Program with the Master Program, Corrupted PLC Memory External problems - Power failure, faulty grounding and electrical noise interference (RFI or EMI), Status of the Output Modules and their associated Circuitry, Status of the Input Modules and their associated Circuitry, Field Input and Output Devices, Communication Issues. Environmental Conditions. Check for humidity, temperature, vibration, and noise-level limits specified by its manufacturer <p>3.5 Troubleshooting of Specific Components of the PLC System</p> <ul style="list-style-type: none"> Power Supply Troubleshooting I/O Modules Troubleshooting Troubleshooting PLC Program Errors Troubleshooting the Working Environment of a PLC Replacement of CPU <p>3.6 PLC trouble shooting flowchart</p> <p>3.7 PLC maintenance – PLC maintenance checklist, preventive maintenance procedure, maintenance plan for the PLC system.</p> <p>3.8 Safety procedure and safety equipment's.</p>	
<p>TSO.4.a Describe the function of given element of a SCADA system.</p> <p>TSO.4.b Interface the given PLC with SCADA system using the given Open Platform Communications (OPC).</p> <p>TSO.4.c Describe the steps to develop a simple SCADA screen for the given industrial application.</p> <p>TSO.4.d Describe the procedure to maintain the SCADA based PLC system for the given application.</p>	<p>Unit-4.0 SCADA and DCS</p> <p>4.1 Introduction, need, benefits and typical applications of SCADA and DCS</p> <p>4.2 SCADA Architecture - Remote Terminal Units (RTUs), Master Terminal Units, Various SCADA editors, Communication protocols for SCADA</p> <p>4.3 Comparison of SCADA with DCS</p> <p>4.4 Interfacing SCADA system with PLC- Typical connection diagram, Object Linking and Embedding for Process Control (OPC) architecture</p> <p>4.5 Creating SCADA Screen HMI for simple object, Steps for linking SCADA object (defining Tags and items, creating trends etc.,) with PLC ladder program using OPC, configuring simple applications using SCADA: Traffic light control, water distribution, pipeline control, Power generation, transmission and distribution etc.</p> <p>4.6 Procedure to maintain the SCADA based PLC system.</p>	CO-3
<p>TSO.5a Identify different components used for automation in the given system</p> <p>TSO.5b Select automation components for a given situation</p> <p>TSO.5c In the given manufacturing or service industry Identify the areas where automation is possible.</p> <p>TSO.5d Prepare plan for sustainable automation as per the requirement.</p>	<p>Unit-5.0 Applications of Industrial Automation</p> <p>5.1 Manufacturing- Industrial Robots- welding robots, pick and place robots, Cabot's, Machine monitoring system, supply chain, Automated assembly system, Flexible Automation and programmable Automation.</p> <p>5.2 Health Care- microscopic robots for medical diagnosis, automated medication dispensing devices, AESOP, ZEUS, RP_7(remote presence 7th generation), DaVinci</p> <p>5.3 Defense- guided rockets and missiles, counter measures, UAV drones, launcher, radar antenna, engagement control system</p>	CO-5

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
	<p>5.4 Automobile –Break monitoring system, Vehicle tracking system, Rear-view alarm to detect obstacles behind, Four-wheel drive, Traction control system, Dynamic steering response, Anti-lock braking system (ABS) Adaptive cruise control, Adaptive headlamps, Intelligent Parking Assist System, Driverless/Autonomous Cars</p> <p>5.5 Agriculture- harvesters, irrigation systems, plowing machines, self-driving tractors, grain yield sensor</p> <p>5.6 Mining- Mine planning system, mine picture compilation, mine control system, seismic imagining, laser imaging, Rig control system, automated drilling, automated exploration, automated truck</p>	

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical (2000608F):

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<i>LSOs 1.1</i> Data communication from PLC to PC and vice versa	1.	Transfer the control data from PLC to PC andvice versa	CO1
<i>LSOs 1.2</i> Establish Communication channels between PLC s.	2.	Transfer the control data from PLC to PLC	CO1
<i>LSOs 1.3</i> Transfer data from sensors to PLC and from PLC to PC.	3.	Transfer the sensor data from sensor to PLC to PLC and PC	CO1
<i>LSOs 1.4</i> Interface the given PLC with a PC ora Laptop	4.	Interface the given PLC with a PC or a Laptop	CO1
<i>LSOs 2.1</i> Identify Different parts and front panel indicators of a PLC	5.	Identify the various parts and front panel status indicators of the given PLC.	CO2
<i>LSOs 2.2</i> Develop Ladder logic program for different arithmetic operations	6.	Develop/Execute ladder logic program for different arithmetic operations such as Addition, subtraction, multiplication, division increment, decrement, trigonometric in a given PLC	CO2
<i>LSOs 2.3</i> Develop Ladder logic program for different logical operations	7.	Develop/Execute ladder logic program for logical operations such as AND, OR, NOT, NAND, NOR, X-OR, X-NOR gate along with truth table	CO2
<i>LSOs 2.4</i> Program Latch and Unlatch circuit in aPLC for motor operation	8.	Program the given PLC to start run and stop the given motor using latch circuit	CO2
<i>LSOs 2.5</i> Create delay in operation using on delay, off delay and retentive timer function in a given PLC.	9.	Test the functionality of on delay, off delay and retentive timer for its correct operation in a given PLC.	CO2
<i>LSOs 2.6</i> Count the number of objects/events using Up counter, Down counter and UP/Down counter in a PLC	10.	Test the functionality of Up, Down and Up-down counter for its correct operation in a given PLC.	CO2
<i>LSOs 2.7</i> Program PLC using ladder logic to control a LED/Lamp	11.	Develop/Execute a ladder logic program to put LED/lamp in the blinking mode	CO2
<i>LSOs 2.8</i> Program PLC using ladder logic to control a simple traffic light system	12.	Develop/Execute a ladder logic program to control a simple traffic light control system using PLC	CO2

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<p><i>LSOs 3.1</i> Use hygrometer to measure the humidity inside the panel</p> <p><i>LSOs 3.2</i> Use thermometer to measure ambient temperature inside the panel</p> <p><i>LSOs 3.3</i> Use tester to determine the voltage fluctuation at the power supply terminals is within specifications</p> <p><i>LSOs 3.4</i> Test the ground connections of the given PLC.</p> <p><i>LSOs 3.5</i> A given PLC is not working as per the logic instructions investigate the PLC to identify the cause of failure to show the desired output</p> <p><i>LSOs 3.6</i> Investigate the cause of Noise in the given PLC</p> <p><i>LSOs 3.7</i> PLC goes on blackout out by losing its operating power. Troubleshoot the cause of failure.</p> <p><i>LSOs 3.8</i> Troubleshoot the corrupted PLC memory.</p> <p><i>LSOs 3.9</i> Replace CPU and power supply fuses in a given PLC system.</p>	13.	Troubleshooting of PLC system	CO3
<p><i>LSOs 4.1</i> Download any open source SCADA software and install the same.</p> <p><i>LSOs 4.2</i> Interpret the available components in symbol factory of SCADA software</p> <p><i>LSOs 4.3</i> Create simple SCADA HMI applications and apply dynamic properties. (Select any Three from the given list)</p> <ol style="list-style-type: none"> Turn on and off a tube light using a Switch Apply filling and object size properties to a rectangle, square and round object Move the object, fill the object using slider and meter reading. Apply orientation property to a fan and control its direction using a slider. Move a square object horizontally first, then vertically and again horizontally by applying visibility property. <p><i>LSOs 4.4</i> Create historical and real time trends for the given automation</p>	14.	Develop simple SCADA HMI applications using any one open source SCADA software and apply dynamic properties	CO4
<p><i>LSOs 5.1</i> Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump.</p> <p><i>LSOs 5.2</i> Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application</p>	15.	Develop simple automation systems for the given requirement (Select any Three from the given list)	CO5

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
<p><i>LSOs 5.3</i> Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system.</p> <p><i>LSOs 5.4</i> Develop a Automation system to Open and close the door in the shop</p> <p><i>LSOs 5.5</i> Develop a line following robot with RFID sensor for supplying materials and automating workflow.</p> <p><i>LSOs 5.6</i> Develop smart street light controlling mechanism which will switch on/off the lights automatically depending on the intensity of the sunlight at that particular time of the day.</p> <p><i>LSOs 5.7</i> Develop smart automated railway crossing system to detect train arrival and departure and send appropriate signals to the microcontroller.</p>			

L) **Suggested Term Work and Self Learning (2000611F):** Some sample suggested assignments, micro project and other activities are mentioned here for reference.

a. **Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.

- i. State three advantages of using programmed PLC timer over mechanical timing relay.
- ii. It is required to have a pilot light glow, meeting all of the circuit requirements given below:
 - All four circuit pressure Switches must be closed.
 - At least two out of three circuit limit Switches must be closed.
 - The reset Switch must not be closed.
- iii. Using AND, OR, and NOT gates, design a logic circuit that will solve this hypothetical problem
- iv. Prepare a comparison chart of different types of PLC
- v. Prepare a maintenance plan for a given PLC system.

b. **Micro Projects:**

1. Troubleshoot the faulty equipment/kit available in automation laboratory
2. Select one industry and analyze the process and propose the automation strategies' that can be used for automation.
3. Develop a working model of a given application using given actuators and valves.
4. Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump.
5. Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application
6. Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system.

c. **Other Activities:**

1. Seminar Topics- PLC instructions, Timers and Counters used in a given PLC

2. Seminar Topics- Industrial Applications of PLC and SCADA, AGV, Application of automation in different area, trouble shooting of different types of PLC
3. Visits – Visit any industry with full or semi automation and prepare a report on industrial automation used by the industry in the given section, components used, power requirement, output achieved and maintenance activities required.
4. Surveys- Carry out a market/internet survey of PLC and prepare the comparative technical specifications of any one type of PLC (Micro or Mini) of different manufacturer.
5. Product Development- Develop a prototype automatic railway crossing system
- a. Software Development- Download any open source software for PLC and install on your laptop/PC and carry out basic PLC programming
6. Also download any open source software for SCADA and install on your laptop/PC and carry out basic SCADA HMI programming
7. Surveys – Carry out a internet based survey to compare SCADA and DCS

d. Self-learning topics:

- Basic concepts of working of robot
- Automated material handling.
- Instrumentation systems for inspection and testing for quality of the product
- Use of robots in different applications
- Intelligent Transportation Systems
- Communication standards and protocols used in PLC
- Use of PLC for different industrial applications
- Use of SCADA for different industrial applications
- Interfacing of PLC

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate **CO attainment**.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/Mid Sem Test	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignment	Micro Projects	Other Activities *		
CO-1	10%	20%	20%	--	33%	10%	20%
CO-2	15%	25%	20%	--	33%	15%	20%
CO-3	15%	20%	20%	--	34%	15%	20%
CO-4	30%	20%	20%	50%	--	30%	20%
CO-5	30%	15%	20%	50%	--	30%	20%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents thereflection of sample representation of assessment of cognitive domain of full course.

Unit Title and Number	Total Classroom Instruction(Hrs)	Relevant COs Number(s)	Total Marks	ETA (Marks)		
				Remember(R)	Understanding(U)	Application & above (A)
Unit-.1.0 Industrial automation Communication and Interfacing	9	CO1	14	5	4	5
Unit-.2.0 PLC Programming	12	CO2	17	5	6	6
Unit-.3.0 Installation and maintenance of PLCsystems	10	CO3	14	4	5	5
Unit-.4.0 SCADA and DCS	9	CO4	14	4	5	5
Unit-.5.0 Applications of Industrial Automation	8	CO5	11	2	4	5
Total Marks	48		70	20	24	26

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA *	PDA* (%)	
1.	Transfer the control data from PLC to PC and vice versa	CO1	50	40	10
2.	Transfer the control data from PLC to PLC	CO1	50	40	10
3.	Transfer the sensor data from sensor to PLC to PLC and PC	CO1	50	40	10
4.	Interface the given PLC with a PC or a Laptop	CO1	50	40	10
5.	Identify Different parts and front panel indicators of a PLC	CO2	50	40	10
6.	Develop Ladder logic program for different arithmetic operations	CO2	50	40	10
7.	Develop Ladder logic program for different logical operations	CO2	50	40	10
8.	Program Latch and Unlatch circuit in a PLC for motor operation	CO2	50	40	10
9.	Create delay in operation using on delay, off delay and retentive timer function in a given PLC	CO2	50	40	10
10.	Count the number of objects/events using Up counter, Down counter and UP/Down counter in a PLC	CO2	50	40	10
11.	Program PLC using ladder logic to control a LED/Lamp	CO2	50	40	10
12.	Program PLC using ladder logic to control a simple traffic lightsystem	CO2	50	40	10

S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA *	PDA* (%)	
13.	Use hygrometer to measure the humidity inside the panel	CO3	50	40	10
14.	Use thermometer to measure ambient temperature inside the panel	CO3	50	40	10
15.	Use tester to determine the voltage fluctuation at the power supply terminals is within specifications	CO3	50	40	10
16.	A given PLC is not working as per the logic instructions investigate the PLC to identify the cause of failure to show the desired output	CO3	50	40	10
17.	Investigate the cause of Noise in the given PLC	CO3	50	40	10
18.	PLC goes on blackout out by losing its operating power. Troubleshoot the cause of failure.	CO3	50	40	10
19.	Troubleshoot the corrupted PLC memory.	CO3	50	40	10
20.	Replace CPU and power supply fuses in a given PLC system	CO3	50	40	10
21.	Download any open source SCADA software and install the same.	CO4	50	40	10
22.	Interpret the available components in symbol factory in SCADAsoftware	CO4	50	40	10
23.	Create simple SCADA HMI applications and apply dynamic properties (Any Three) . <ul style="list-style-type: none"> i. Turn on and off a tube light using a Switch ii. Apply filling and object size properties to a rectangle, square and round object iii. Move the object, fill the object using slider and meter reading. iv. Apply orientation property to a fan and control its direction using a slider. v. Move a square object horizontally first, then vertically and again horizontally by applying visibility property. 	CO4	50	40	10
24.	Create historical and real time trends for the given automation	CO4	50	40	10
24	Select any three of the following: - <ul style="list-style-type: none"> i. Develop a smart irrigation device to detect the change in moisture level in the soil and controls the flow of water accordingly with a DC pump. ii. Build an electronic device that can remotely control home appliances with your Bluetooth-enabled smartphone and a special Android application iii. Develop a PLC program to control the robot in such a way that the robot can automatically pick and place components and works in sync with the conveyor belt system. iv. Develop a Automation system to Open and close the door in the shop v. Develop a line following robot with RFID sensor for supplying materials and automating workflow. vi. Develop smart street light controlling mechanism which will Switch on/off the lights automatically depending on 	CO5	60	30	10

S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PLA/ELA		
			Performance		Viva-Voce (%)
			PRA *	PDA* (%)	
	the intensity of the sunlight at that particular time of the day. vii. Develop smart automated railway crossing system to detect train arrival and departure and send appropriate signals to the microcontroller.				

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specification	Relevant Experiment/Practical Number
1.	SCADA software (reputed make like Allen Bradley, Siemens etc.,)	Ready-to-use symbol library, React and respond in real-time, Real time monitoring, Friendly, manageable, secure, extensible, Easy-to-use, easy to implement, Easy configuration, simplified maintenance, Communication with PLC, easy and flexible alarm definition, data collection and analysis for new and existing systems, easy-to-use for report generation, open access to historical data, different packages available with input/output structure. Open source software SCADA software: like Ellipse/FTVSE/Wonderware/ open SCADA can also be used	14
2.	Universal PLC Training System with HMI (Of reputed make such as Allen Bradley, Siemens, etc.,) Compatible with SCADA software	Human Machine Interface (HMI) display, PLC with 16 digital inputs, 16 digital outputs with RS232 communication facility. Open platform to explore wide PLC and HMI applications. Industrial look & feel. Toggle Switches, push to ON Switch, proximity sensor, visual indicator, audio indicator, and DC motor. Experiments configurable through patch board. Powerful instruction sets. Several sample ladder and HMI programs. PC based ladder and HMI programming. Extremely easy and student friendly software to develop different programs. Easy downloading of programs. Practice troubleshooting skills. Compact tabletop ergonomic design. Robust construction. PLC gateway for cloud connectivity. Open source software like Ladder logic simulator, Pico soft Simulator, Logixpro simulator, Simple EDA tools can also be used	1 to 12
3.	Safety gears	Gloves, Safety goggles, Ear protection, Dust masks and respirators.	13
4.	Power tools	Power drills, Orbital Sanders, Circular saws, Impact wrenches.	13
5.	Hand tools	Screwdrivers, Hammers, Hand saws, Hex Key Allen Wrench Set Inch and Metric, relay puller, Multi-Tool Wire Stripper/Crimper/Cutter	13

S. No.	Name of Equipment, Tools and Software	Broad Specification	Relevant Experiment/Practical Number
6.	Electrical tools	Wire and cable strippers, Multimeters- Volts, Ohms, and Amps, Crimpers- Side Cutter Crimping, Wire Crimp Connector Kit, Digital Multimeter Clamp Meter with Amp, Volt, and Ohm, Non-Contact Voltage Tester	13
7.	Spare parts	PLC Programming Cables, SD Card Reader Compact flash, Wire Nut Set, Fuses- Class J 30, 35, 60, and 100 -amp fuses, Class CC 2, 3, 5, 10, 15, 20, and 30 -amp fuses, 5mm x 20mm 0.032 (for 4-20mA circuits), 0.5, 1, 2, 5, 10, and 15 amps, Cube Relays, Resistor Kit, batteries, LED Indicators PLC Processor (CPU), Input/output module	13
8.	Thermo-hygrometer	Measuring range Temp.: -30 ... 60°C / -22 ... 140°F Measuring range rel. Humidity: 0 ... 100% rh, Measurement protocol as PDF, Data export possible as CSV, Readable without software, data sets of measured values can be stored.	13
9.	Digital Hygrometer	maximum humidity measurement- 100% RH, temperature measurement resolution -0.1degree centigrade, humidity measurement resolution -0.1% RH, minimum operating temperature - -10 to -20-degree centigrade, Maximum operating temperature +45 to +50 degree centigrade	13

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Programmable Logic Controllers	Dunning, G.	Thomson /Delmar learning, New Delhi, 2005, ISBN 13: 9781401884260
2.	Programmable Logic Controllers	Petruzzella, F.D.	McGraw Hill India, New Delhi, 2010, ISBN: 9780071067386
3.	Programmable Logic Controllers	Hackworth, John; Hackworth, Federic	PHI Learning, New Delhi, 2003, ISBN: 9780130607188
4.	Industrial automation and Process control	Stenerson Jon	PHI Learning, New Delhi, 2003, ISBN: 9780130618900
5.	Programmable Logic Controller	Jadhav, V. R.	Khanna publishers, New Delhi, 2017, ISBN: 9788174092281
6.	Programmable Logic Controllers and Industrial Automation - An introduction,	Mitra, Madhuchandra; Sengupta, Samarjit,	Penram International Publication, 2015, ISBN: 9788187972174
7.	Control System	Nagrath & Gopal	New Age International Pvt Ltd, ISBN: 9789386070111, 9789386070111
8.	Linear Control Systems with MATLAB Applications, Publisher:	Manke, B. S.	Khanna Publishers, ISBN: 9788174093103, 9788174093103
9.	Supervisory Control and Data Acquisition	Boyar, S. A.	ISA Publication, USA, ISBN: 978-1936007097
10.	Practical SCADA for industry,	Bailey David; Wright Edwin	Newnes (an imprint of Elsevier), UK2003, ISBN: 0750658053
11.	Industrial Automation: Systems and Engineering	Geoffrey Williamson	States Academic Press, 2022 ISBN 9781649649270
12.	Industrial Automation Technologies	Jane Taylor	States Academic Press 2023 ISBN 9781649649255
13.	Introduction to Industrial Automation	Kian Pearson	Willford Press 2023, ISBN 9781682860864

(b) Online Educational Resources:

1. Software: - www.fossee.com

2. Software: - www.logixpro.com
3. Software: - www.plctutor.com
4. Software; - www.ellipse.com
5. PLC lecture: - <https://www.youtube.com/watch?v=pPiXEfBO2qo>
6. PLC tutorial: http://users.isr.ist.utl.pt/~jag/aulas/apil3/docs/API_I_C3_3_ST.pdf
7. <https://www.youtube.com/watch?v=277wwYWolpw>-PLC system troubleshooting and repair.
Industrial control panel. PLC system repair.
8. <https://www.youtube.com/watch?v=5Jmtvrch5Jg>
9. <https://www.youtube.com/watch?v=peyV9bwEaLY>
10. <https://www.youtube.com/watch?v=QdJhRmtKpxk&list=RDCMUCke36Li>
q- w5fboMHkq1APZw&index=3
11. <https://www.youtube.com/watch?v=ygrRwaJz3M>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

1. Learning Packages
2. Users' Guide
3. Manufacturers' Manual
4. Lab Manuals

S) Course Curriculum Development Team (NITTTR, Bhopal)

- Dr. Vandana Somkuwar (Coordinator)
- Dr. C.S.Rajeshwari (Co-coordinator)

A) **Course Code** : **2000605G/2000608G/2000611G**
 B) **Course Title** : Electric Vehicle (Advanced)
 C) **Prerequisite Course(s)** : Electric Vehicle (Basics)
 D) **Rationale** :

The automobile manufacturing sector in India is rapidly switching over to electric vehicles used for the public as well as private transport. The Govt. of India has launched the FAME-II Scheme (Faster Adoption and Manufacturing of Hybrid & Plug-in Electric Vehicles) to encourage the progressive induction of reliable, affordable and efficient electric and hybrid vehicles and to create demand for Electric Vehicles in the country. The technology is being evolved to enhance the vehicle's efficiency and running mileage by controlling the manufacturing, maintenance and recurring costs of such vehicles. Due to the rapid increase in EV demand, industries will also require skilled manpower in this area. This advanced course on electric vehicles is included as an open elective for all the diploma programmes to provide a sound knowledge of EVs to engineering diploma students and develop skills related to testing and maintenance of various electrical, electronic and mechanical systems in EVs.

E) **Course Outcomes (COs):** After the completion of the course, teachers are expected to ensure the learners' accomplishment of the following course outcomes. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the student will be able to-

CO-1 Compute various parameters affecting Vehicle movement.
CO-2 Test the operation of the different elements of the Automobile System.
CO-3 Test the battery and motor used for Power Transmission in EVs.
CO-4 Test electronic control unit system of EVs.
CO-5 Interpret the impact of Grid to Vehicle (G2V) and Vehicle to Grid (V2G) during the charging cycle.

F) Suggested Course Articulation Matrix (CAM):

Course Outcomes(COs)	Programme Outcomes(POs)							Programme SpecificOutcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	3	-	1	2	-	-	1		
CO-2	3	2	2	3	1	-	-		
CO-3	2	2	2	3	3	1	3		
CO-4	2	3	-	2	2	-	2		
CO-5	3	2	-	2	3	1	2		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Boar dof Stud y	Cours e Code	Cours e Title	Scheme of Study (Hours/Week)					
			Classroo m Instructio n(CI)		Lab Instructio n (LI)	Notiona l Hours (TW+ SL)	Total Hour s (CI+LI+TW+ SL)	Total Credit s (C)
			L	T				
	2000605G/ 2000608G/ 2000611G	Electric Vehicle (Advanced)	03	-	04	02	09	05

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances /problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term Work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc.

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times \text{Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Boar dof Study	Course Code	Cours e Title	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)	
			Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessme nt(LA)			
			Progres sive Theo ry Assess ment (PTA)	End Theo ry Assess ment (ETA)	Internal	External	Progres sive LabAssess ment (PLA)	End Laboratory Assess ment (ELA)		
	2000605 G/20006 08G/200 0611G	Electric Vehicle (Advanced)	30	70	20	30	20	30	200	

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done **internally (40%)** as well as **externally (60%)**. Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at the course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to the attainment of Course Outcomes

(COs) upon the completion of the course. While curriculum detailing, NEP 2020-related reforms like

Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 1a. Explain the vehicle movement process</p> <p>TSO 1b. Derive various equations for the movement of Vehicles</p> <p>TSO 1c. Compute different resistances affecting Vehicle movement.</p> <p>TSO 1d. Explain the dynamics of the given type of EV system.</p>	<p>Unit-1.0 Vehicle Dynamics</p> <p>1.1 Vehicle Movement</p> <p>1.2 Rolling Resistance: Equation, Coefficient, factor affecting rolling resistance, typical values of rolling resistance</p> <p>1.3 Grading resistance</p> <p>1.4 Road resistance</p> <p>1.5 Acceleration resistance</p> <p>1.6 Total driving resistance</p> <p>1.7 Aerodynamic drag: Equation, typical values of the drag coefficient.</p> <p>1.8 Vehicle dynamics</p> <ul style="list-style-type: none"> • Hybrid and Electric Vehicles • DC Motor Dynamics and Control • AC Motor Dynamics and Control 	CO 1
<p>TSO 2 a. Identify the given elements of Automobile Systems.</p> <p>TSO 2 b. Describe the functions of the given elements of Automobile Systems.</p> <p>TSO 2 c. Explain the dynamic characteristics of the Disc Braking System for the given braking steps.</p> <p>TSO 2 d. Describe the Procedure for testing the given AC/DC motors.</p> <p>TSO 2 e. Describe the Procedure of Installation and Testing of the given EV Charging Stations.</p> <p>TSO 2 f. Describe the Procedure for Commissioning EV Charging Stations.</p> <p>TSO 2 g. Explain the functions of the EV Control Unit.</p>	<p>Unit-2.0 Elements of Automobile</p> <p>2.1 Suspension and Damping systems</p> <p>2.2 Brake system: Half-step braking, Full stepBraking</p> <p>2.3 Transaxle</p> <p>2.4 Elements of Noise Vibration and Harshness Control</p> <p>2.5 Body balancing</p> <p>2.6 Tyre Technology</p> <p>2.7 AC/DC motor</p> <p>2.8 Air-conditioning and Heating System</p> <p>2.9 Lighting System</p> <p>2.10 Automotive wiring system</p> <p>2.11 Earthing and Insulation</p> <p>2.12 Charging stations – Installation and Commissioning</p> <p>2.13 Vehicle control unit</p>	CO 2
<p>TSO 3a. Compare different power transmission systems in EVs.</p> <p>TSO 3b. List the main Components of the EV PowerTrain.</p> <p>TSO 3c. Explain the functions of the given EV PowerTrain component.</p> <p>TSO 3d. Describe the testing procedure of the given EV Power Train component.</p> <p>TSO 3e. Explain the regenerative braking operation in the given EV motor.</p> <p>TSO 3f. Describe the speed control mechanism of the given motor.</p> <p>TSO 3g. Explain various parameters of the given battery.</p> <p>TSO 3h. Select the suitable battery for the given EV application.</p> <p>TSO 3i. Describe the assembling and dismantling procedure of the given battery.</p>	<p>Unit-3.0 EV Power Transmission System</p> <p>3.1 Transmission System: Single and Multi-transmission system</p> <p>3.2 EV Power Train</p> <p>3.3 EV Power Train Components: Battery Pack, DC-AC Converter, Electric Motor, On-Board Charger.</p> <p>3.4 Battery Parameters: Voltage, Current, Charging rate, efficiency, energy density, power density, State of Charge (SoC), Depth of Discharge (DoD), State of Health (SoH), Operating Temperature, specific energy, specific power, life cycle and cost.</p> <p>3.5 Battery Assembly and Dismantling.</p> <p>3.6 Gear and Differential Assembly</p> <p>3.7 Safe disposal of used battery</p>	CO 3

Major Theory Session Outcomes (TSOs)		Units	Relevant tCOs Number(s)
TSO 3j. Describe the Mechanism of Gear and Differential Assembly.			
TSO 4a. Describe the Vehicle Control Unit (VCU).	TSO 4b. Describe the functions of the given component of the Electronic Control Unit.	Unit- 4.0 Vehicle Control Unit (VCU)	CO 4
TSO 4c. Describe the connections of the given control unit with the EV sub-system.	TSO 4d. Explain the Interaction of Controller AreaNetwork Communication with VCU.	4.1 Electronic Control Unit: Battery Management System, DC-DC Converter, Thermal Management System and BodyControl Module. 4.2 Predefined functions 4.3 Connections with EV subsystem 4.4 Controller Area Network (CAN)communication 4.5 Interaction of CAN Communication with VCU. 4.6 Troubleshooting and Assessment 4.7 Dynamometers: Introduction 4.8 Environmental Chambers	
TSO 4e. Describe the Troubleshooting and Assessment procedure of VCU.			
TSO 5a. Explain the Classification of Charging Technologies.	TSO 5b. Explain the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid.	Unit- 5.0 EV Charging Technologies	CO 5
TSO 5c. Describe the testing procedure of the given Bi-directional charging systems.	TSO 5d. Explain the Energy Management Strategies in the EV.	5.1 Charging Technology: Classification 5.2 Grid-to-Vehicle (G2V) 5.3 Vehicle to Grid (V2G) or Vehicle to Buildings (V2B) or Vehicle to Home(V2H). 5.4 Bi-directional EV Charging Systems. 5.5 Energy Management Strategies. 5.6 Wireless Power Transfer (WPT) technique for EV Charging.	
TSO 5e. Explain the Wireless Power Transfer (WPT) technique for EV Charging.			

Note: One major TSO may require more than one theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical (2000608G):

Practical/Lab Session Outcomes (LSOs)		S. No.	Laboratory Experiment/Practical Titles	Relevant tCOs Number(s)
LSO 2.1	Test the operation of the Control Disc Braking system and control the regenerative braking system using a test rig.	1.	• Testing of Control Disc Braking system and Control Regenerative Braking system.	CO2
LSO 2.2	Test the performance (Speed v/s Braking Torque) of the Disc Braking System in Half step and Full step braking modes.			
LSO 2.3	Test the performance of different types of propulsion motors.	2.	• Testing of Motors	
LSO 2.4	Test the continuity of the automotive wiring system in the EV	3.	• Testing of the automotive wiring system.	
LSO 3.1	Test the performance of a new set of batteries and aged batteries.	4.	• Testing of Batteries used in EVs	CO2, CO3
LSO 3.2	Compare the performance of the battery and find the Fuel Gauge after discharging the battery. a. 0% - 100% b. 30% - 100% c. 50% - 100%			
LSO	Evaluate the following parameters of the			

3.3

given EV battery.

- a. Specific power
- b. Specific energy

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
c. Life span and d. Cost parameters LSO 3.4 Evaluate the State of Health (SoH) of the given EV Battery after several charge/discharge cycles.			
LSO 3.5 Test the dynamic performance of the given motor; a) Speed and torque spectrum. b) Speed and torque oscillation c) Friction torque friction spectrum. LSO 3.6 Test the following speed-controlled performance characteristics of the given motor; a. Motor voltage over time b. Motor current over time. c. Speed and torque over time. d. Torque over speed. e. Current over speed. f. Electrical input power and the mechanical input power over speed	5.	• Speed control of Electrical Motors	
LSO 4.1 Connect the components of the EC Units with EV subsystems. LSO 4.2 Troubleshoot basic faults in the electronic control unit of EV.	6.	• Connection of Electronic Control Unit components • Troubleshooting of electronic control unit	CO4
LSO 5.1 Evaluate the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid.	7.	• Impacts of G2V and V2G	CO 5
LSO 5.2 Prepare a layout of a charging station	8.	• Demonstration of Charging stations	

L) Suggested Term Work and Self-Learning (2000611G): Some sample suggested assignments, micro projects and other activities are mentioned here for reference.

- Assignments:** Questions/ Problems/ Numerical/ Exercises to be provided by the course teacher in line with the targeted COs.
- Micro Projects:**
 - Design and build a physical model of an EV motor and powertrain components from scratch.
 - Build and simulate communication systems of EVs using some software tools.
 - Prepare a report on “the way carbon credit works and companies utilize it to reduce their emission values”.
 - Develop an EV prototype power train using locally procured hardware components.
- Other Activities:**
 - Seminar Topics:**
 - Safe disposal process of Used Batteries.
 - Charging Technologies used for charging the EV.
 - EV power transmission systems.
 - Surveys** – Visit an electric vehicle manufacturing plant and prepare report on HVAC system used in EV.

3. Self-learning topics:

- Impact of fleet charging of EVs on Power Systems.
- Energy Management in EV.
- Fuel Cell powered bus.
- EV Battery disposal and recycling.
- Mobility and connectors.

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use the appropriate assessment strategy and its weightage, in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of the student in each of these designed activities is to be used to calculate **CO attainment**.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA) [#]	
	Progressive Theory Assessment (PTA) Class/MidSem Test	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignments	Micro Projects	Other Activities*		
CO-1	20%	15%	20%	--	--	--	--
CO-2	20%	20%	20%	--	--	35%	25%
CO-3	20%	30%	20%	70%	40%	40%	25%
CO-4	20%	25%	20%	30%	20%	10%	25%
CO-5	20%	10%	20%	--	40%	15%	25%
Total Marks	30	70	20	20	10	20	30
			50				

Legend:

*: Other Activities include self- learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point- (O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents the reflection of sample representation of assessment of the cognitive domain of the full course.

Unit Title and Number	Total Classroom Instruction (CI) Hours	Relevant COs Number (s)	Total Marks	ETA (Marks)		
				Remember (R)	Understanding (U)	Application & above (A)
Unit-1.0 Vehicle Dynamics	8	CO1	12	4	5	3
Unit-2.0 Elements of Automobile.	10	CO2	15	5	6	4
Unit-3.0 EV Power Transmission System.	14	CO3	20	4	10	6
Unit-4.0 Vehicle Control Unit (VCU)	10	CO4	15	4	6	5
Unit-5.0 Charging Technologies	6	CO5	8	3	3	2
Total Marks	48		70	20	30	20

Note: Similar table can also be used to design class/mid-term/ internal question papers for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S. N.	Laboratory Practical Titles	Relevant COs Number(s)	PLA /ELA		
			Performance		Viva - Voc e (%)
			PRA *	PDA* (%)	
1	Testing of Control Disc Braking system and ControlRegenerative Braking system.	CO2	60	30	10
2	Testing of Motors.				
3.	Testing of automotive wiring system.				
4.	Testing of Batteries used in EVs	CO2, CO3	60	30	10
5.	Speed control of Electrical Motors		60	30	10
6.	Connection of Electronic Control Unit components	CO4	60	30	10
7.	Troubleshooting of electronic control unit		60	30	10
7	Impacts of G2V and V2G	CO 5	30	60	10
8	Demonstration of Charging stations		70	20	10

Legend:

PRA*: Process Assessment

PDA**: Product Assessment

Note: This table can be used for both the end semester as well as progressive assessment of practicals. Rubrics need to be prepared by the course teacher for each experiment/practical to assess the student's performance.

P) Suggested Instructional/Implementation Strategies: Different Instructional/ Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources (OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
1.	Disc Braking and Regenerativebraking system test rig	Test rig equipment for Demonstration of Disc Braking and Regenerative Braking system operation.	1
2.	Disc Braking System	Test rig / Software for testing the performance of the disc braking system in Half step and Full step braking mode.	1
3.	Induction motor	Induction motor For EV applications with testing kit	2,5
4.	Switched reluctance motor	Switched reluctance motor for EV applications with testing kit	2,5

5.	Permanent magnet (PM) DC motors	Permanent magnet (PM) DC motors for EV applications with testing kit	2,5
6.	Automotive wiring system	Testing facility of automotive wiring system using software /actual EV systems	3

S. No.	Name of Equipment, Tools and Software	Broad Specifications	Relevant Experiment/Practical Number
7.	Lithium Ion and Lead-acid Batteries	12V, 7Ah with testing setup.	4
8.	Nickel-based batteries (metal hydride and cadmium battery).	12V, 7Ah with testing setup.	4
9.	Battery tester	For testing battery parameters	4
10.	Battery charger	Battery charger for EV	4
11.	Battery Management System	Training kit or simulation for BMS	4
12.	DC-DC Converter	48V to 12V bidirectional DC-DC Converter	4
13.	Power Analyser	To observe the impacts of G2V and V2G	5
14.	BMS setup	For Demonstration & training	4
15.	DC power supply	0-32V	5
16.	Charging Station Simulator	For Demonstration & training purposes.	5
17.	EC Unit with EV subsystems	Electronic Control Unit Hardware parts/ software for demonstrating the Connection of Electronic Control Unit components with EV subsystems.	6,7
18.	Facility to demonstrate the impact of the Grid on Vehicle Charging and Vehicle Charging on the Grid.	-	7

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Electric Vehicles: And the End of the ICE age	Anupam Singh	Kindle Edition ASIN: B07R3WFR28
2.	Wireless Power Transfer Technologies for Electric Vehicles (Key Technologies on New Energy Vehicles)	Xi Zhang, Chong Zhu, Haitao Song	Springer Verlag, Singapore; 1st ed.2022 edition (23 January 2022) ISBN-13: 978-9811683473
3.	Modern Electric, Hybrid Electric, and Fuel Cell Vehicles	EHSANI	CRC Press; Third edition (1 January 2019) ISBN-13: 978-0367137465
4.	Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles	John G. Hayes, G. Abas Goodarzi	Wiley; 1st edition (26 January 2018) ISBN-13: 978-1119063643
5.	New Perspectives on Electric Vehicles	Marian Găiceanu (Editor)	IntechOpen (30 March 2022) ISBN-13: 978-1839696145
6.	Electric and Hybrid Vehicles,	Tom Denton, Taylor & Francis	2nd Edition (2020) ISBN- 9780429296109
7.	Hybrid Electric Vehicles: Energy Management Strategies	S. Onori, L. Serrao and G. Rizzoni	Springer (2016) ISBN: 978-1-4471-6781-5

8.	Electric & Hybrid Vehicles	A.K. Babu	Khanna Publishing House, NewDelhi, 1st Edition (2018) ISBN: 9789386173713, 9386173719
----	----------------------------	-----------	---

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
9.	Power Electronics: Circuits, Devices and Applications,	Rashid, M. H.	Pearson, 3rd edition, (2013) ASIN: B07HB3BM1W
10	Electric Vehicle Engineering	Liana Walker	Clanrye International2023, ISBN-978164729097
11	Electric Vehicles: Current Progress & Technologies	Vanessa Jones	Murphy & Moore Publishing 2023, ISBN 9781649872746
12	20 Electric and Hybrid Vehicles: Principles, Design and Technology	Mary Murphy	Larsen and Keller Education 2023 ISBN 9781641728520

(b) Online Educational Resources:

1. <https://www.energy.gov/eere/fuelcells/fuel-cell-systems>
2. <https://powermin.gov.in/en/content/electric-vehicle>
3. <https://www.iea.org/reports/electric-vehicles>
4. <https://www.oercommons.org/search?f.search=Electric+Vehicles>
5. <https://fame2.heavyindustries.gov.in/Index.aspx>

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested, online educational resources before use by the students.

(c) Others:

1. Learning Packages on EV
2. EV Users' Guide
3. EV Manufacturers' Manual
4. EV Lab Manuals

S) Course Curriculum Development Team (NITTTR, Bhopal)

- Dr. A. S. Walkey (Coordinator)
- Dr. S. S. Kedar (Co- coordinator)

A) Course Code : **2000605H/2000608H/2000611H**

B) Course Title : Robotics (Advance)

C) Pre- requisite Course(s) : Robotics (Basic)

D) Rationale :

Efficiency and quality are the demands of industry 4.0. Robotics is a constituent of Industry 4.0 which not only provides the former two but also is beneficial for hazardous and similar challenging situations. The use of robotic technology is developing at a very fast rate in all types of industries whether manufacturing, service or tertiary. Engineers should be competent to use the robotic technology for industry and society advantage. This course aims for the diploma engineers to have advanced skills in robotic applications and use in digital manufacturing.

E) Course Outcomes (COs): After the completion of the course, teachers are expected to ensure the accomplishment of following course outcomes by the learners. For this, the learners are expected to perform various activities related to three learning domains (Cognitive, Psychomotor and Affective) in classroom/ laboratory/ workshop/ field/ industry.

After completion of the course, the students will be able

to-CO-1 Plan the use of robots in engineering applications.

CO-2 Elucidate the conceptual place of the robotic components for engineering processes.

CO-3 Use robots for small automatic robotic applications.

CO-4 Compute the economics associated with use of robots in industries.

CO-5 Select appropriate robot for industrial requirements and other applications.

F) Suggested Course Articulation Matrix (CAM):

Course Outcome s(COs)	Programme Outcomes(POs)							Programme Specific Outcomes* (PSOs)	
	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/Development of Solutions	PO-4 Engineering Tools	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project Management	PO-7 Life Long Learning	PSO-1	PSO-2
CO-1	-	-	3	-	2	-	2		
CO-2	-	2	3	2	-	-	-		
CO-3	3	2	3	-	-	-	2		
CO-4	3	-	-	2	-	-	-		
CO-5	3	2	-	-	2	-	-		

Legend: High (3), Medium (2), Low (1) and No mapping (-)

* PSOs will be developed by respective programme coordinator at institute level. As per latest NBA guidelines, formulating PSOs is optional

G) Teaching & Learning Scheme:

Boar d of Stud y	Course Code	Cour se Title	Scheme of Study (Hours/Week)					
			Classroo m Instructio n (CI)		Lab Instructio n(LI)	Notiona l Hours (TW+ SL)	Total Hour s (CI+LI+TW+ SL)	Total Credit s (C)
			L	T				
	2000605H	Robotics	03	-	04	02	09	05

	/2000608H (Advance) /2000611H						
--	----------------------------------	--	--	--	--	--	--

Legend:

CI: Classroom Instruction (Includes different instructional/implementation strategies i.e. Lecture (L), Tutorial (T), Case method, Demonstrations, Video demonstration, Problem based learning etc. to deliver theoretical concepts)

LI: Laboratory Instruction (Includes experiments/practical performances/ problem-based experiences in laboratory, workshop, field or other locations using different instructional/Implementation strategies)

Notional Hours: Hours of engagement by learners, other than the contact hours for ensuring learning.

TW: Term work (includes assignments, seminars, micro projects, industrial visits, any other student activities etc.)

SL: Self Learning, MOOCs, spoken tutorials, online educational resources etc

C: Credits = $(1 \times CI \text{ hours}) + (0.5 \times LI \text{ hours}) + (0.5 \times \text{Notional hours})$

Note: TW and SL have to be planned by the teacher and performed by the learner under the continuous guidance and feedback of teacher to ensure outcome of learning.

H) Assessment Scheme:

Boar dof Stud y	Course Code	Course Title	Assessment Scheme (Marks)						Total Marks (TA+TWA+LA)
			Theory Assessment (TA)		Term Work & Self- Learning Assessment (TWA)		Lab Assessme nt(LA)		
Progressiv e Theory Assessment (PTA)	End Theory Assessment (ETA)	Internal	External	Progressiv e Lab Assessment (PLA)	End Laborator y Assessment				
	2000605H /2000608H /2000611H	Robotics (Advance)	30	70	20	30	20	30	200

Legend:

PTA: Progressive Theory Assessment in class room (includes class test, mid-term test and quiz using online/offline modes)

PLA: Progressive Laboratory Assessment (includes process and product assessment using rating Scales and rubrics)

TWA: Term work & Self Learning Assessment (Includes assessment related to student performance in assignments, seminars, micro projects, industrial visits, self-learning, any other student activities etc.)

Note:

- Separate passing is must for progressive and end semester assessment for both theory and practical.
- ETA & ELA are to be carried out at the end of the term/ semester.
- Term Work is to be done by the students under the guidance of internal faculty but its assessment will be done internally (40%) as well as externally (60%). Assessment related to planning and execution of Term Work activities like assignment, micro project, seminar and self-learning is to be done by internal faculty (Internal Assessment) whereas assessment of output/product/ presentation related to these activities will be carried out by external faculty/expert (External Assessment). However, criteria of internal as well as external assessment may vary as per the requirement of respective course. For valid and reliable assessment, the internal faculty should prepare checklist & rubrics for these activities.

I) Course Curriculum Detailing: This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Term Work (TW) and Self Learning (SL). Students are expected to demonstrate the attainment of Theory Session Outcomes (TSOs) and Lab Session Outcomes (LSOs) leading to attainment of Course Outcomes (COs) upon the completion of the course. While curriculum detailing, NEP 2020 related reforms like Green skills, Sustainability, Multidisciplinary aspects, Society connect, Indian Knowledge System (IKS) and others must be integrated appropriately.

J) Theory Session Outcomes (TSOs) and Units:

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 1a. Define the need and scope of industrial robots.</p> <p>TSO 1b. Describe the concept of robot dynamics with regards to methods for orientation and location of objects.</p> <p>TSO 1c. Analyse robot direct kinematics for the given 2 DOF planar manipulator.</p> <p>TSO 1d. List types of robots</p> <p>TSO 1e. List safety steps while handling the given robot.</p> <p>TSO 1f. Interface robots with the given welding machine.</p> <p>TSO 1g. Interface robots with the given painting machine.</p> <p>TSO 1h. Interface robots with the given assembly machine.</p>	<p>Unit-1.0 Robot Kinematics, Dynamics and Industrial Applications</p> <p>1.1 Definition need and scope of Industrial robots</p> <p>1.2 Robot dynamics – Methods for orientation and location of objects</p> <p>1.3 Planar Robot Kinematics – Direct and inversekinematics for 2 Degrees of Freedom.</p> <p>1.4 Safety while operating and handling robot</p>	CO2, CO3
	<p>1.5 Robot Industrial applications:</p> <ul style="list-style-type: none"> • Welding Robots-Welding Guns, Welding Electrodes, Welding Power Sources, shielding gases, Robot interfacing • Spray painting Robots, assembly operation, cleaning. 	
<p>TSO 2a. Explain the techniques to control robot motion.</p> <p>TSO 2b. Describe the given robot drive system.TSO 2c. Describe the types of grippers.</p> <p>TSO 2d. Design grippers for specificapplication.</p> <p>TSO 2e. Test the designed gripper for the application.</p> <p>TSO 2f. Use Bar code technology for robotic applications.</p> <p>TSO 2g. Integrate radio frequency identification technology in robotic applications.</p> <p>TSO 2h. Assemble an automated guided vehicle for the given situation using standard components.</p> <p>TSO 2i. Assemble a simple automated storage and retrieval systems (ASRS) for the given situation using standard components.</p>	<p>Unit- 2.0 Robot Drives, Control and Material Handling</p> <p>2.1 Controlling the Robot motion.</p> <p>2.2 Position and velocity sensing devices.</p> <p>2.3 Drive systems – Hydraulic and Pneumaticdrives</p> <p>2.4 Linear and rotary actuators and control valves</p> <p>2.5 Electro hydraulic servo valves, electric drives,motors</p> <p>2.6 End effectors – Vacuum, magnetic and air operated grippers</p> <p>2.7 Material Handling; automated guided vehicle systems, automated storage and retrieval systems (ASRS)</p> <p>2.8 Bar code technology</p> <p>2.9 Radio frequency identification technology.</p>	CO2, CO3
<p>TSO 3a. Differentiate between various work cell layouts.</p> <p>TSO 3b. Select work cell for specific robot withjustification.</p> <p>TSO 3c. Analyse robot cycle time.</p> <p>TSO 3d. Explain industrial applications of roboticcell.</p> <p>TSO 3e. Follow safety procedures in robotic cell.</p>	<p>Unit- 3.0 Robot Cell Design and Application</p> <p>3.1 Robot work cell design, control and safety</p> <p>3.2 Robot cell layouts</p> <p>3.3 Multiple Robots and machine interference</p> <p>3.4 Robot cycle time analysis</p> <p>3.5 Industrial application of robotic cells</p>	CO3
<p>TSO 4a. List different programming languages for the robots</p> <p>TSO 4b. Describe artificial intelligence</p> <p>TSO 4c. Write a programme in the required language to operate a robot for the given task.</p> <p>TSO 4d. Optimise robot programming parameters.</p>	<p>Unit- 4.0 Robot Programming and Economics of Robotization</p> <p>4.1 Characteristics of task level languages through programming methods</p> <p>4.2 Motion interpolation</p> <p>4.3 Artificial intelligence: Goals of artificialintelligence, AI techniques, problem</p>	CO1, CO4, CO5

Major Theory Session Outcomes (TSOs)	Units	Relevant COs Number(s)
<p>TSO 4e. Select a robot on the basis of cycle time analysis.</p> <p>TSO 4f. Conduct an economic analysis for use of robots.</p> <p>TSO 4g. Follow testing methods and acceptance rules for industrial robots.</p>	<p>4.4 representation in AI</p> <p>4.4 Problem reduction and solution techniques.</p> <p>4.5 Application of AI and KBES in Robots</p> <p>4.6 Selection of Robots; Factors influencing the choice of a robot, selection of robot components, robot performance testing, work cycle time analysis</p> <p>4.7 Economics analysis for robotics, costdata required for the analysis</p> <p>4.8 Methods of economic analysis; Pay back method, equivalent uniform annual cost method, return on investment method.</p> <p>4.9 Testing methods and acceptance rules for industrial robots</p>	
<p>TSO 5a. Describe applications of robots in healthcare and medicine.</p> <p>TSO 5b. Describe applications of robots in Construction industry.</p> <p>TSO 5c. Describe applications of robots in Underground coal mining.</p> <p>TSO 5d. Describe applications of robots in utilities, military & firefighting operations.</p> <p>TSO 5e. Describe applications of robots in undersea and space</p> <p>TSO 5f. Describe applications of robots in brief in logistics, retail and hospitality, and smart cities.</p> <p>TSO 5g. Describe applications of robots in farming and agriculture in brief explain in brief the use of microrobots, nano robots, soft robots, humanoid robots</p>	<p>Unit-5.0 Applications in Non-manufacturing Environments</p> <p>5.1 Applications of Robots in</p> <ul style="list-style-type: none"> • Healthcare and medicine • Construction industry • Underground coal mines • Utilities, military & firefighting operations • Undersea • Space • Logistics, • Retail and Hospitality • Smart Cities • Farming and Agriculture <p>5.2 Overview of Microrobots, nano robots, soft robots, humanoid robots</p>	CO5

Note: One major TSO may require more than one Theory session/Period.

K) Suggested Laboratory (Practical) Session Outcomes (LSOs) and List of Practical (2000608H):

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 1.1 Identify Wireless Sensor Network. LSOs 2.1 LSOs 1.2 Use wireless sensor Network for different robotic applications	1.	Identify different wireless sensor network in robotics viz. ZigBee, LoRa.	CO1, CO3
LSOs 2.2 Identify different Radio Frequency (RF)Controlled Wireless LSOs 2.2 Use Radio Frequency (RF) Controlled Wireless for different robotic applications.	2.	Use different Radio Frequency (RF) Controlled Wireless Robots.	CO1, CO2
LSOs 3.1 Identify the different Voice operated robot with speaker identification technology	3.	Examine different voice operated robot with speaker identification technology.	CO1, CO3

Practical/Lab Session Outcomes (LSOs)	S. No.	Laboratory Experiment/Practical Titles	Relevant COs Number(s)
LSOs 3.2 Use different Voice operated robot with speaker identification technology for different robotic applications.			
LSOs 5.1 Identify the components required for a computer-controlled pick and place robot (wireless). LSOs 5.2 Integrate the components for the required application.	4.	Design a computer-controlled pick and place robot (wireless)	CO1
LSOs 6.1 Identify the components required for a Zigbee controlled Boat with wireless video and voice transmission. LSOs 6.2 Integrate the components for the required application.	5.	Design a Zigbee controlled Boat with wireless video and voice transmission.	CO2, CO3
LSOs 8.1 Identify the components required for a PC controlled wireless Multipurpose robot for engineering applications. LSOs 8.2 Integrate the components for the required application.	6.	Design a PC controlled wireless Multipurpose robot for simple engineering applications.	CO2, CO4, CO5
LSOs 9.1 Identify the components required for an unmanned arial photography LSOs 9.2 Integrate the components for the required application.	7.	Design an unmanned arial photography system.	CO3, CO5
LSOs 10.1 Develop a program LSOs 10.2 Simulate palletizing and depalletizing operations through robots.	8.	Develop program for real time (online TPP) Palletizing and Depalletizing operations through robots.	CO5
LSOs 11.1 Develop a program LSOs 11.2 Simulate direction control and step control logic for robotization	9.	Develop TPP / Offline program for vision-based inspection for robots.	CO4, CO5
LSOs 12.1 Develop a program LSOs 12.2 Simulate robotising an inspection and part assembly.	10.	Program and simulate coordinated identification, inspection and part assembly for robots.	CO1, CO5
LSOs 13.1 Develop a program. LSOs 13.2 Simulate obstacle avoidance of robots.	11.	Develop obstacle avoidance robot Programming	CO1, CO5
LSOs 14.1 PLC programming. LSOs 14.2 Simulate robotising of welding operation.	12.	Program and simulate welding operation using robot simulation software.	CO1, CO5
LSOs 15.1 Simulate robotising of drilling operation.	13.	TPP / Offline program for drilling operation.	CO1, CO5
LSOs 16.1 Develop a program for an industrial application. LSOs 16.2 Execute the robot programme.	14.	Program to execute an industrial robot application using a given configuration.	CO1, CO5
LSOs 17.1 Use robot simulation software for DirectKinematic analysis upto 4-axis robots LSOs 17.2 Correlate the simulated results with respective mathematical calculations.	15.	Analyse Direct Kinematics of 4-axis robot using available software.	CO2

L) Suggested Term Work and Self Learning (2000611H): Some sample suggested assignments, micro project and other activities are mentioned here for reference.

- a. Assignments:** Questions/Problems/Numerical/Exercises to be provided by the course teacher in line with the targeted COs.
- b. Micro Projects:** A suggestive list of micro-projects is given here. Similar micro-projects that match the COs could be added by the concerned course teacher. The student should strive to

identify eco-friendly or recycled material prior to selection for robotic applications.

1. Develop coin separating robot.
2. Develop robot using radio frequency sensors for material handling.
3. Develop robot for land mine detection.
4. Develop a robot for car washing.

c. Other Activities:

1. Seminar Topics: Recent developments in the industrial applications of robotics
2. Visits: Visit a robotic exhibition.
3. Case Study: Identify a robotic application in automobiles and present a case study
4. Download videos related to simple robotic applications in domestic and industrial purposes.
5. Self-learning topics:
 - Robotic component manufacturers

M) Suggested Course Evaluation Matrix: The course teacher has to decide and use appropriate assessment strategy and its weightage in theory, laboratory and Term Work for ensuring CO attainment. The response/performance of each student in each of these designed activities is to be used to calculate CO attainment.

COs	Course Evaluation Matrix						
	Theory Assessment (TA)**		Term Work Assessment (TWA)			Lab Assessment (LA)##	
	Progressive Theory Assessment (PTA) Class/MidSem Test	End Theory Assessment (ETA)	Term Work & Self-Learning Assessment			Progressive Lab Assessment (PLA)	End Laboratory Assessment (ELA)
			Assignment s	Micro Project s	Other Activities *		
CO-1	25%	23%	20%	10%	25%	10%	20%
CO-2	20 %	23%	20%	10%	25%	20%	20%
CO-3	15%	17%	20%	25%	25%	20%	20%
CO-4	20%	20%	20%	15%	25%	20%	20%
CO-5	20%	17%	20%	40%	--	30%	20%
Total Marks	30	70	20	20	10	20	30
				50			

Legend:

*: Other Activities include self-learning, seminar, visits, surveys, product development, software development etc.

**: Mentioned under point- (N)

#: Mentioned under point-(O)

Note:

- The percentage given are approximate
- In case of Micro Projects and End Laboratory Assessment (ELA), the achieved marks will be equally divided in all those COs mapped with total experiments.
- For CO attainment calculation indirect assessment tools like course exit survey need to be used which comprises of questions related to achievement of each COs.

N) Suggested Specification Table for End Semester Theory Assessment: Specification table represents thereflection of sample representation of assessment of cognitive domain of full course.

Unit Number and Title	Total Classroom Instruction(Hrs)	Relevant COs Number (s)	Total Marks	ETA (Marks)		
				Remember (R)	Understanding(U)	Application& above (A)
Unit-1.0 Robot Kinematics, Dynamics and Industrial Applications	12	CO2, CO3	16	6	5	5
Unit- 2.0 Robot Drives, Control and Material Handling	10	CO2, CO3	16	4	8	4

Unit– 3.0 Robot Cell Design and Application	8	CO3	12	2	4	6
Unit– 4.0 Robot Programming and Economics of Robotization	10	CO1, CO4, CO5	14	4	4	6
Unit– 5.0 Applications in Non-manufacturing Environments	8	CO5	12	4	4	4
Total Marks	48		70	20	25	25

Note: Similar table can also be used to design class/mid-term/ internal question paper for progressive assessment.

O) Suggested Assessment Table for Laboratory (Practical):

S. No.	Laboratory Practical Titles	Relevant COs Number(s)	PLA/EL A		
			Performance		Viva - Voc (%)
			PRA *	PDA* (%)	
1.	Identify different wireless sensor network in robotics viz. ZigBee, LoRa.	CO1, CO3	40	40	20
2.	Use different Radio Frequency (RF) Controlled Wireless Robots.	CO1, CO2	40	40	20
3.	Examine different voice operated robot with speaker identification technology.	CO1, CO3	40	40	20
4.	Design a computer-controlled pick and place robot (wireless)	CO1, CO4	40	40	20
5.	Design a Zigbee controlled Boat with wireless video and voice transmission.	CO2, CO3	40	40	20
6.	Design a PC controlled wireless Multipurpose robot for simple engineering applications.	CO3, CO4	40	40	20
7.	Design an unmanned aerial photography system.	CO3, CO5	40	40	20
8.	Develop program for real time (online TPP) Palletizing and Depalletizing operations through robots.	CO5	40	40	20
9.	Develop TPP / Offline program for vision-based inspection for robots.	CO4, CO5	40	40	20
10.	Program and simulate coordinated identification, inspection and part assembly for robots.	CO1, CO5	40	40	20
11.	Develop Obstacle avoidance robot Programming	CO1, CO5	40	40	20
12.	Program and simulate welding operation using robot simulation software.	CO1, CO5	40	40	20
13.	TPP / Offline program for drilling operation.	CO1, CO5	40	40	20
14.	Program to execute an industrial robot application using a given configuration.	CO1, CO5	40	40	20
15.	Analyse Direct Kinematics of 4-axis robot using available software.	CO2, CO3	40	40	20

Legend:

PRA *: Process Assessment

PDA **: Product Assessment

Note: This table can be used for both end semester as well as progressive assessment of practical. Rubrics need to be

prepared by the course teacher for each experiment/practical to assess the student performance.

P) **Suggested Instructional/Implementation Strategies:** Different Instructional/Implementation Strategies may be appropriately selected, as per the requirement of the content/outcome. Some of them are Improved Lecture, Tutorial, Case Method, Group Discussion, Industrial visits, Industrial Training, Portfolio Based Learning, Role Play, Live Demonstrations in Classrooms, Lab, Field, Information and Communications Technology (ICT) Based Teaching Learning, Blended or flipped mode, Brainstorming, Expert Sessions, Video Clippings, Use of Open Educational Resources(OER), MOOCs etc.

Q) List of Major Laboratory Equipment, Tools and Software:

S.No.	Name of Equipment, Tools and Software	Broad Specification	Relevant Experiment /Practical Number
1.	6 Axis Articulated Robot(Material Handling)- 1 No	<ul style="list-style-type: none"> • Articulated Type • Controlled axis: 6-axes (J1, J2, J3, J4, J5, J6) • Reach: 717 mm • Installation Floor, Upside-down (Angle mount) • Motion range (Maximum Speed) <ul style="list-style-type: none"> • J1 Axis Rotation 7.85 rad/s • J2 Axis Rotation 6.63 rad/s • J3 Axis Rotation 9.08 rad/s • J4 Axis Rotation 9.60 rad/s • J5 Axis Rotation 9.51 rad/s • J6 Axis Rotation 17.45 rad/s • Max. load capacity Wrist: 4Kg • Allowable Load moment 16.6 N-m at wrist J4 Axis, J5 Axis, J6 Axis • Allowable Load inertia).47 kg-m² at wrist J4 Axis J5 Axis, J6 Axis • Repeatability: +/- 0.05mm • Mass: 21 Kg Minimum • Installation environment: Ambient temperature: 0 – 45°C • Ambient humidity: Normally 75%RH or less. No dew, nor frost allowed. • Vibration Acceleration: 4.9 m/s² (0.5G or less) 	1, 2, 3, 12
2.	6 Axis Articulated Robot(General Purpose-Welding, Assembly, Drilling) - 1 No	Link 1: 300 mm Link 2: 300 mm Joint actuator: DC Stepper Motor Transmission: Timing Belt Drive Position feedback: Proximity Switch Gripper actuator: Pneumatic Weight of robot: 50 Kg. Accuracy: ± 0.3 Repeatability: ± 0.2 Tip Velocity range: 500 mm / min Pay load capacity: 2 kg (including gripper) J1 - Waist: $\pm 140^\circ$ J2 - Shoulder: -100° - 60° J3 - Elbow: -70° - 10° J4 - Wrist rotate: $\pm 70^\circ$ J5 - Wrist pitch: $\pm 35^\circ$ J6 - Wrist roll: $\pm 180^\circ$ External I/O 8 Programmable digital inputs 8 Programmable digital outputs	8, 9, 14
3.	A mounted vision system with software (Free open source Robot simulation software)	Integrity Serial Bus System, CAN to Build Intelligent Device Network, Open Hardware Platform, Arduino, to control Robot sub-Systems of motor-sensor, movable Omni Wheel of Omni-Directional, Actuator operation control by DC Encoder Motor, DC-Motor control and operation by Accelerometer, Gyro, Ultrasonic and PSD sensor, Androx Studio; brushless ILM 70×10 Robo Drive DC motor; sensor-actuator units of ARMAR-4; SD-25-160-2A-GR-BB	3, 4, 5, 11

S.No.	Name of Equipment, Tools and Software	Broad Specification s	Relevant Experiment /Practical Number
		Harmonic Drive reduction gear unit high gear ratio of 160: 1; structural parts (white) are made out of high-strength aluminum, Hollow shaft with strain gauges for torque sensing, motor's magnetic incremental encoder (AMS5306), digital buses (SPI or 12C); Motor interface PCB includes a 13-Bit temperature-to-digital converter with a temperature range from -40°C to 125°C (Analog Devices ADT7302)	
4.	6-axis Robotics Trainer	Programmable robotic arm with an interactive frontpanel. Software to demonstrates functioning of the trainer as well as allows a user to develop their own programs. NV330; 8 bit microcontroller to ARM processors; Record and Play capability; Optional interfacing with PLC; Touch operated ON/OFF Switch; Auto set to home position; Applications can be developed; Data acquisition using USB	3, 4, 5, 13
5.	E-Yantra Firebird kit	<ul style="list-style-type: none"> • Fire Bird V 2560 Robot • Spark V Robot • Fire Bird V P89V51RD2 adapter card • Fire Bird V LPC2148 adapter card • LSM303 3 axis digital accelerometer and 3 axes magnetometers • L3G4200 3 axis digital gyroscope • Gyroscope, accelerometer and GPS interfacing module for the robot • GPS receiver • Zigbee Modules 100m range • Zigbee Modules Adapter • Metal-gear Servo Motors • Servo Motor Based Gripper kit for the Fire Bird Vrobot • Sharp infrared range sensor (10cm to 500cm) • Arduino Uno/Nano • Hexapod • 16 Programming Software (AVR studio, Keil, AVR Boot loader, Flash Magic) 	1, 3, 5, 6, 7, 10
6.	Robot simulator for Robotics	Educational networking licensed Robotic system with simulation software	2, 8, 10
7.	Assorted sensors	Optical encoders, Acoustic sensors ,IR, Potentiometer, RTD, Thermistor, strain gauge, piezoelectric, etc.	4
8.	Vision equipment	Camera, Imaging Components: Point, Line, Planar and Volume Sensors	1, 4, 10
9.	Raspberry Pi kit	1.2GHz quad-core Broadcom BCM2837 CPU with 1GB DDR2 RAM with in-built Wi-Fi & Bluetooth Video Core IV 3D graphics core 40 pin extended pins - with 27 GPIO pins Micro SD slot Multiple ports: Four USB ports, full sized HDMI, four pole stereo output and composite video port, CSI camera port and DSI display port 10/100 BaseT Ethernet Micro-USB, power source 5V, 2A	7, 9

R) Suggested Learning Resources:

(a) Books:

S. No.	Titles	Author(s)	Publisher and Edition with ISBN
1.	Introduction to Robotics Mechanics and Control	John Craig	Pearson Education 978-9356062191
2.	Robotics and controls	Mittal R.K., Nagrath I.J.	Tata McGraw Hill Education Pvt. Ltd.;2017; 978-0070482937
3.	Robotics and Image Processing: AnIntroduction	Janaki Raman. P. A	Tata McGraw Hill Publishing companyLtd., 1998; 978-0074621677
4.	Industrial Robotics - Technology,Programming and Applications	Nicholas Odrey, Mitchell Weiss, Mikell Groover Roger Nagel, AshishDutta	McGraw Hill Education; 2nd Edition;978 -1259006210
5.	Robotic Engineering: an integrated approach	Richard D. Klafter, Thomas A. Thomas A. Chmielewski, Michael Negin	Prentice Hall of India, N. Delhi, 2009;978-8120308428
6.	Industrial Robotics Technology,Programming and Applications	Mikell P. Groover, Mitchell Weiss,Roger N. Nagel, Nicholas G. Odrey	McGraw-Hill Education, SecondEdition, 978-1259006210
7.	Robotics	Appuu Kuttan K. K.	Dreamtech Press, First Edition, 2020, 978-9389583281
8.	Introduction to Robotics: Analysis,Control, Applications	Saeed B. Niku	Wiley; Second Edition,978-8126533121
9.	Essentials of Robotics ProcessAutomation	S. Mukherjee	Khanna Publication, First Edition, 978-9386173751
10.	Robotics	R R Ghorpade, M M Bhoomkar	Nirali Prakashan 978-9388897020
11.	Mechatronics: Engineering Fundamentals	Allie Weaver	Murphy & Moore Publishing 2022 ISBN 9781649872758
12.	Elements of Robotics	Greg Scott	States Academic Press 2022 ISBN 9781649649261
13.	Robotics: Design, Construction and Applications	Allie Weaver	Willford Press 2022 ISBN 9781682860944
14.	Modern Robotics: Mechanics, Systems and Control	Julian Evans	Larsen and Keller Education 2022 ISBN 9781641728515
15.	Introduction to Mechatronics	Randy Dodd	Larsen and Keller Education 2022 ISBN 9781641728493
16.	Introduction to Robotics	Julian Evans	Larsen and Keller Education 2022 ISBN 9781641728503

(b) Online Educational Resources:

1. <https://web.iitd.ac.in/~saha/ethiopia/appln.pdf>
2. <https://nptel.ac.in/courses/112105249>
3. <https://www.robotsscience.com/industrial/industrial-robots-types-applications-benefits-and-future/>
4. https://www.marian.ac.in/public/images/uploads/pdf/online-class/MODULE-6%20ROBOTICS%20INDL_APPLNS-converted.pdf
5. <https://forcedesign.biz/blog/5-common-industrial-robot-applications>
6. <https://www.hitechnectar.com/blogs/top-industrial-robotics-applications-role-of-robots-in-manufacturing/>
7. https://en.wikipedia.org/wiki/Industrial_robot

8. <https://www.youtube.com/watch?v=fH4VwTgfyrQ>
9. https://www.youtube.com/watch?v=aW_BM_S0z4k
10. <https://www.automate.org/industry-insights/smarter-robot-grasping-with-sensors-software-the-cloud>
11. <https://robots.ieee.org/robots/?t=all>
12. https://www.youtube.com/watch?v=fc_Cynqr6jM

Note: Teachers are requested to check the creative commons license status/ financial implications of the suggested OER, before use by the students.

(c) Others:

1. Learning Packages:

- <https://www.edx.org/learn/robotics>
- <https://www.coursera.org/courses?query=robotics>
- <https://www.udemy.com/topic/robotics/>
- <https://library.e.abb.com/public/9a0dacfdec8aa03dc12578ca003bfd2a/Learn%20with%20ABB.%20Robotic%20package%20for%20education.pdf>

2. Users' Guide:

- <https://roboindia.com/store/DIY-do-it-yourself-educational-kits-robotics-embedded-system-electronics>
- <https://www.robomart.com/diy-robotic-kits>
- <https://www.scientechworld.com/robotics>

3. Lab Manuals:

- http://www-cvr.ai.uiuc.edu/Teaching/ece470/docs/ROS_LabManual.pdf
- <https://www.jnec.org/labmanuals/mech/be/sem1/Final%20Year%20B.Tech-ROBOTICS%20LAB%20%20MANUAL.pdf>

S) Course Curriculum Development Team (NITTTR, Bhopal)

- Dr. Nishith Dubey (Coordinator)
- Prof. (Mrs.) Susan S. Mathew (Co-Coordinator)
- Dr. Sharad Pradhan

ADVANCE MANUFACTURING PROCESS LAB

Subject Code 2025608A	Practical						Credits 02
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/S	Internal (PA)	:	20	
			04	External (ESE)	:	30	
					:		

Course objectives:

- To Know the working of Drilling machine, shaper, slotter, planer, milling and grinding machines and be in a position to operate the same.
- To make use of various measuring instruments for taking dimensions.
- To Practice different operations on drilling shaper, slotter, planer, milling and grinding machines.

Course Content:

S.No. Topics for practice

- I Drilling Exercise (Three different sized holes for different materials maintaining uniform distance between them)
- II Milling-square-hexagon from round bars with indexing and without indexing
- III Generation of spur gear teeth on a round bar
- IV Simple planning exercise cutting 'T' slots (one model)
- V Shaping a Hexagon on a round bar, key ways, grooves splines
- VI Shaping step block cut dovetail to angles 60, 90, 120 degrees
- VII Cylindrical grinding of external surface and internal surface using universal grinding machines
- VIII Grinding Cutting tools to the required angles
- IX Grinding of milling cutters etc, on a tool and cutter grinder
- X Grinding flat surface on a surface grinder using magnetic chuck and clamping devices
- XI Dismantling some of the components of drilling machine and service, assemble the same
- XII Dismantling some of the components of shaper head and then assemble the same
- XIII Dismantling some of the components of Milling machines and service, assemble the same
- XIV Servicing of universal grinding machine

Reference Books:

1. Elements of Workshop Technology (Volume I & II) – HajraChowdry&Bhattacharaya, Media Pro- moters, 11th Edition, 2007
2. Introduction of Basic Manufacturing Processes and Workshop Technology – Rajendersingh, New age International (P) Ltd. NewDelhi, 2006
3. Production Technology – HMT, 18th edition, Tata McGraw Hill, New Delhi
4. Manufacturing process – Myro N Begman,
5. 5 th edition, Tata McGraw Hill, New Delhi

Course outcomes:

At the end of the course, the student will be able to:

- CO1 Dismantle and assemble the components on drilling, shaping, milling and grinding machines.
- CO2 Perform operations on drilling, shaping, milling and grinding machines.
- CO3 Produce articles of industrial application such as Spur gear, square headed bolt, V- block
- CO4 Make use of various measuring instruments for taking dimensions

TERM WORK **SEMINAR**

Subject Code 2025609	Theory			Full Marks Internal(PA) : 50 External(ESE) : 35	Credits 02		
	No. of Periods Per Week						
	L	T	P/S				
	—	—	04				

Course objectives:

A seminar is a form of academic instruction, either at an academic institution or offered by a commercial or professional organization. It has the function of bringing together small groups for recurring meetings, focusing each time on some particular subject, in which everyone present is requested to participate. This is often accomplished through an ongoing Socratic dialogue with a seminar leader or instructor, or through a more formal presentation of research. It is essentially a place where assigned readings are discussed, questions can be raised and debates can be conducted.

The term *seminar* is also used to describe a research talk, often given by a visiting researcher and primarily attended by academics, research staff, and postgraduate students. Seminars often occur in regular series, but each seminar is typically given by a different speaker, on a topic of that speaker's choosing. Such seminars are not usually a part of a course of study and are therefore not usually associated with any assessment or credit. The term *colloquium* is often used interchangeably with seminar in this sense.

TERM WORK
MAJOR PROJECT.

Subject Code 2025610	Theory						Credits 03
	No. of Periods Per Week			Full Marks	:	100	
	L	T	P/S	Internal(PA)	:	30	
			06	External(ESE)	:	70	
	—	—	—		:		

Course objectives:

The projects if done right can help enthusiastic electrical engineering students to develop the skills/profile needed for an exciting career in core technologies. Since practical skills are very important to work on core industries, experts tend to analyse candidate's performance based on their project experience during the interviews.

These projects provide an excellent opportunity to learn and showcase your practical skills to your future interviewers easily. If spent qualitatively you can build a very innovative electrical project and get a great learning experience. By doing so, you will not only develop an innovative project but also develop valuable skills needed for a successful career in core technologies related to electrical engineering. The best way to master a subject is by doing projects. Through a project you not only get a deeper understanding of the subject but also gain hands-on practical experience. If you are looking to do internships in college, the best way to catch the companies attention is through projects.

Projects are generally done as a combined team effort. Two or more students work under a guide or a staff to get a certain result. By doing a project, you will

- Understand your subject better
- Get practical experience
- Chance to showcase your skills
- Learn about team work, communication skills and responsibilities

When companies look for interns, they prefer students who have good understanding of the subject with at least some hands-on experience. The best to achieve both is by doing projects.

There is no fixed time to do a project. You can do it right from your first year in college. If you are looking to do a technical project, then the best time to start would be mid second year. It's not mandatory that you do many projects but make sure that you at least do one project. A lot of students tend to do few small projects from their second year and do a big project in their final year. By showcasing your projects, you can even look for internships while in college.

You can do any kind of projects based on your interests or subjects. The best way to go about this is to figure out what you are interested in so, the first step is to find your interest and then do projects in your area of interest.

Find your area of interest and then do a project in that field.

You can start by exploring different areas and then pick the field in which you are interested in. You can learn more about it and start working on small problems.

COURSE UNDER MOOCS/ NPTEL / OTHERS

Subject Code 2025611	Theory			No of Periods in One Session: 28			Credits 01
	No. of Periods Per Week			Full Marks	:	50	
	L	T	P/ S	Internal (PA)	:	20	
	-	-	02	External (ESE)	:	30	